379 research outputs found

    Consistent SDNs through Network State Fuzzing

    No full text
    The conventional wisdom is that a software-defined network (SDN) operates under the premise that the logically centralized control plane has an accurate representation of the actual data plane state. Nevertheless, bugs, misconfigurations, faults or attacks can introduce inconsistencies that undermine correct operation. Previous work in this area, however, lacks a holistic methodology to tackle this problem and thus, addresses only certain parts of the problem. Yet, the consistency of the overall system is only as good as its least consistent part. Motivated by an analogy of network consistency checking with program testing, we propose to add active probe-based network state fuzzing to our consistency check repertoire. Hereby, our system, PAZZ, combines production traffic with active probes to continuously test if the actual forwarding path and decision elements (on the data plane) correspond to the expected ones (on the control plane). Our insight is that active traffic covers the inconsistency cases beyond the ones identified by passive traffic. PAZZ prototype was built and evaluated on topologies of varying scale and complexity. Our results show that PAZZ requires minimal network resources to detect persistent data plane faults through fuzzing and localize them quickly

    Assessing molecular diversity among 87 species of the Quercus L. genus by RAPD markers

    Get PDF
    Oaks (Quercus sp.) are among the most ecologically and economically important woody Angiosperms of the northern hemisphere. Nowadays, the reduction of Quercus biodiversity is becoming a matter of global concern, and several oak species have been included in the IUCN Red List of Threatened Species. Consequently, characterization and preservation strategies for the oak germplasm are largely promoted. Thus, in this work, the genetic diversity existing among 87 different Quercus species was assessed using the RAPD markers, in order to better typify these specimens, to show the amazing DNA variability of this plant genus, and to confirm or infer new putative molecular correlations. Our data were discussed taking into consideration the phylogenetic and phylogeographic relationships previously proposed by the literature. In general, the obtained results corroborated that the evolutionary pattern of Quercus genus has been extremely intricate and continues to change rapidly, making it difficult to be fully resolved. The evidence collected in the present investigation would confirm the complex evolution of the oaks, due to their high migration capacity, divergence rate, and hybridization propensity. This research, performed on a so large series of species, represents a positive contribution for highlighting the genetic diversity within collections of Quercus germplasm and favouring ex-situ conservation programmes

    Exploiting the Potential in Water Cleanup from Metals and Nutrients of Desmodesmus sp. and Ampelodesmos mauritanicus

    Get PDF
    Increasing levels of freshwater contaminants, mainly due to anthropogenic activities, have resulted in a great deal of interest in finding new eco-friendly, cost-effective and efficient methods for remediating polluted waters. The aim of this work was to assess the feasibility of using a green microalga Desmodesmus sp., a cyanobacterium Nostoc sp. and a hemicryptophyte Ampelodesmos mauritanicus to bioremediate a water polluted with an excess of nutrients (nitrogen and phosphorus) and heavy metals (copper and nickel). We immediately determined that Nostoc sp. was sensitive to metal toxicity, and thus Desmodesmus sp. was chosen for sequential tests with A. mauritanicus. First, A. mauritanicus plants were grown in the ‘polluted’ culture medium for seven days and were, then, substituted by Desmodesmus sp. for a further seven days (14 days in total). Heavy metals were shown to negatively affect both the growth rates and nutrient removal capacity. The sequential approach resulted in high metal removal rates in the single metal solutions up to 74% for Cu and 85% for Ni, while, in the bi-metal solutions, the removal rates were lower and showed a bias for Cu uptake. Single species controls showed better outcomes; however, further studies are necessary to investigate the behavior of new specie

    Antibacterial activity of alkaloids from Sida acuta

    Get PDF
    Sida acuta is a shrub indigenous to pantropical regions. The plant is widely used for its various pharmacological properties. Among compounds of pharmacological interest occurring in the plant, are indoloquinoline alkaloids. The aim of the present study was to investigate the antimicrobial activity ofalkaloids of S. acuta from Burkina Faso. The alkaloids had a good antimicrobial activity against the test microorganisms. In the agar-well diffusion assay, highest inhibition zone diameters were recorded with Gram-positive bacteria. The broth microdilution assay gave minimal inhibitory concentration values ranging from 16 to 400 ìg/ml and minimal bactericidal concentration values ranging from 80 to up to 400 ìg/ml. The gas chromatography-mass spectrometry analysis of the same alkaloids led to the identification of cryptolepine and quindoline as the major components

    Arabidopsis defense against the pathogenic fungus drechslera gigantea is dependent on the integrity of the unfolded protein response

    Get PDF
    Drechslera gigantea Heald & Wolf is a worldwide-spread necrotrophic fungus closely related to the Bipolaris genus, well-known because many member species provoke severe diseases in cereal crops and studied because they produce sesterpenoid phytoxins named ophiobolins which possess interesting biological properties. The unfolded protein response (UPR) is a conserved mechanism protecting eukaryotic cells from the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER). In plants, consolidated evidence supports the role of UPR in the tolerance to abiotic stress, whereas much less information is available concerning the induction of ER stress by pathogen infection and consequent UPR elicitation as part of the defense response. In this study, the infection process of D. gigantea in Arabidopsis thaliana wild type and UPR-defective bzip28 bzip60 double mutant plants was comparatively investigated, with the aim to address the role of UPR in the expression of resistance to the fungal pathogen. The results of confocal microscopy, as well as of qRT-PCR transcript level analysis of UPR genes, proteomics, microRNAs expression profile and HPLC-based hormone analyses demonstrated that ophiobolin produced by the fungus during infection compromised ER integrity and that impairment of the IRE1 /bZIP60 pathway of UPR hampered the full expression of resistance, thereby enhancing plant susceptibility to the pathogen

    Sustainability in Aquaponics: Industrial Spirulina Waste as a Biofertilizer for Lactuca sativa L. Plants

    Get PDF
    Aquaponics represents an alternative to traditional soil cultivation. To solve the problem of nutrient depletion that occurs in this biotechnological system, the application of a spirulina-based biofertilizer was assessed. The microalgal waste used in this study came from industrial processing. Four different dilutions of the supernatant portion of this waste were sprayed on lettuce plants cultivated in an aquaponics system installed at the Botanical Gardens of the Tor Vergata University of Rome. The biofertilizer was characterized to evaluate its amount of macro- and micronutrients. The analysis conducted on the plants involved both morpho-biometric aspects and qualitative–quantitative measurements. The experiments showed that the spirulina extract had a positive effect on the growth and nutraceutical content of the lettuce plants; the obtained results highlighted that a dilution of 75% was the best for treatment. The use of the proposed organic and recycled fertilizer could increase the sustainability of crop cultivation and promote the functioning of aquaponics systems

    Unifying rational models of categorization via the hierarchical Dirichlet process

    Get PDF
    Models of categorization make different representational assumptions, with categories being represented by prototypes, sets of exemplars, and everything in between. Rational models of categorization justify these representational assumptions in terms of different schemes for estimating probability distributions. However, they do not answer the question of which scheme should be used in representing a given category. We show that existing rational models of categorization are special cases of a statistical model called the hierarchical Dirichlet process, which can be used to automatically infer a representation of the appropriate complexity for a given category.Thomas Griffiths, Kevin Canini, Adam Sanborn, Dan Navarr
    • …
    corecore