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Abstract gory learning leave a number of questions open. In particula

o . . man rization experiments have explored whether
Models of categorization make different representational as- any categorization experiments have explored whether peo

sumptions, with categories being represented by prototypes, Pl€ represent categories with exemplars or prototypes. One
sets of exemplars, and everything in between. Rational mod- desideratum for a rational account of category learninginig
els of categorization justify these representational assumptions e that it can indicate when a learner should choose to use one
in terms of different schemes for estimating probability distri- .
butions. However, they do not answer the question of which Of these forms of representation over the other. The greater
scheme should be used in representing a given category. We flexibility of nonparametric density estimation has motich

show that existing rational models of categorization are spe-  the claim that exemplar models are to be preferred as ratio-
cial cases of a statistical model called the hierarchical Dirichlet

process, which can be used to automatically infer a represen- @l models of category learning (Nosofsky, 1998). However,
tation of the appropriate complexity for a given category. nonparametric and parametric methods have different advan

Keywords: rational analysis, categorization, Dirichlet process tages and disadvantages: the greater flexibility of nonpara
) N . ) metric methods comes at a cost of requiring more data to es-
Rational models of cognition aim to explain human be-imate a distribution. The decision as to which represéntat
havior as an optimal solution to the computational problems;cheme to use should be determined by the stimuli presented
posed by our environment (Anderson, 1990). Examiningg the learner, and existing rational analyses do not itelica

these computational problems provides a deeper understangoyy this decision should be made (although a similar argu-
ing of the assumptions behind successful models of humagent is made by Briscoe & Feldman, 2006).

cognition, and can lead to new models. In this paper, we
pursue a rational analysis of category learning: inferthng
structure of categories from a set of stimuli labeled as be

longing to those categories. The knowledge acquired throug

this process can ultimately be used to make decisions aboﬁf)_ss'b'“t'eS between these extremes, representing aasg

how to categorize new stimuli. Existing rational analyses o USIng clusters of several exemplars (Anderson, 1990; van-
category learning (Anderson, 1990; Ashby & Alfonso-ReesePaemel, Storms, & Ons, 2005; Rosseel, 2002; Love, Medin,
1995; Rosseel, 2002) agree that the computational probleff GUreckis, 2004). The range of representations possible
involved is one otlensity estimationdetermining the proba- in these models emphasizes the importance of being able to

bility distributions over stimuli associated with differecat- idgntify an appropriatg representaj[ion for a category ftknm_
egory labels. stimuli themselves: with more options for the represeatsati

f categories, it becomes more important to be able to say
hich option a learner should choose.

The question of how to represent categories is complicated
by the fact that prototype and exemplar models are not the
only options. A number of models have recently explored

Viewing category learning as density estimation helps to?
clarify the assumptions behind the two main classes of psy?
chological models: exemplar models and prototype models. Our goal in this paper is to build on previous rational analy-
Exemplar models assume that a category is represented bysas of category learning to provide not just a unifyiragne-
set of stored exemplars, and categorization involves compawork which can be used to understand the assumptions be-
ing new stimuli to the set of exemplars in each category (e.g hind existing models of categorization, but a unifyimgdel
Medin & Schaffer, 1978; Nosofsky, 1986). Prototype modelsof which these models are special cases. This model goes
assume that a category is associated with a single prototygeeyond previous unifying models of category learning (e.qg.
and categorization involves comparing new stimuli to theseRosseel, 2002; Vanpaemel et al., 2005) by providing a ratio-
prototypes (e.g., Reed, 1972). These approaches to categaral solution to the question of which representation should
learning correspond to different strategies for densityres ~ be chosen based purely on the structure of a category. These
tion, being nonparametric and parametric density estomati results are achieved by identifying connections betweet+mo
respectively (Ashby & Alfonso-Reese, 1995). els of human category learning and ideas from nonparametric

Despite providing insight into the assumptions behindBayesian statistics. In particular, we show that all of thoelm
models of categorization, existing rational analyses ¢é-ca els mentioned above can be viewed as variants of a stochastic
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process called thaierarchical Dirichlet procesqTeh, Jor-  categoryj is defined to be
dan, Beal, & Blei, 2004).
Identifying the connection between models of human cate- NN,j = NN,p; (3)
gory learning and nonparametric Bayesian density estimati ) o
extends the scope of the rational analysis of categoryiregrn Wherep is the prototypical instance of the category ach,
It also provides a different perspective on human categorjs & Measure of the similarity between stimuNsand the
learning. Rather than suggesting that people use one formOtotypep;, as used in the exemplar model.
of representation or another, our approach indicates how it R€alizing that these two models are opposite ends of a
might be possible (and, in fact, desirable) for people tagwi SPectrum, Vanpaemel et al. (2005) observed that we can for-
between representations based upon the structure of the sti Malize a set of interpolating models by allowing the insenc
uli they observe, choosing the representation best justife of each category to be partitioned into clusters, where the
the available data. We illustrate this by modeling data fromumber of cluster&, ranges from 1 td\c. Then each cluster
Smith and Minda (1998), in which people seem to shift fromiS 'epresented by a prototype, and the similarity of a stirsul
using a prototype representation early in training to using N t0 categoryj is defined to be
exemplar representation late in training. Ki
The plan of the paper is as follows. The next section sum- A
. . . r]N.,] z nN,ijk (4)
marizes exemplar and prototype models, and the idea of in- &1
terpolating between the two. We then discuss existingratio
nal models of categorization. This raises the question of ho Wherep; i is the prototype of clustek in categoryj. When
the models might be unified, which we address by turning tdc = 1 for all ¢, this is equivalent to the prototype model,
some ideas from nonparametric Bayesian statistics. Having"d wherkK = N for all ¢, this is equivalent to the exemplar
established these ideas, we define a unifying rational moddnodel. Thus, this generalized model, the Varying Abstoacti
of categorization based on the hierarchical Dirichlet pssg ~ Model (VAM), is more flexible than both the exemplar and
and show that this model can capture the shift from protatypePrototype models, although it raises the problem of estimat
to exemplars in the data of Smith and Minda (1998). ing which clustering people are actually using in a partcul
categorization task (for details, see Vanpaemel et al5200

Exemplars and prototypes

Exemplar and protot del inally develoed Rational models of categorization
xemplar and prototype models were originally develope ) _
as accounts of the cognitive processes involved in categ(fono"\"ng the methodology outlined by Anderson (1990), ra-

rization, incorporating different assumptions about hai+ ¢ tional models .Of categ_onzaﬂon explain _human behavior in
rms of adaptive solutions to a computational problem ghose

egories are represented and how this information is use N th . t rather than th derlvi i
These models share the basic assumption that people assi € environment rather than e underlying cognitive pro
esses. Existing analyses tend to agree that the basic prob-

stimuli to categories based on similarity. Given a sdtlef 1 ) - . .
9 Y lem is one ofprediction— identifying the category label or

stimuli with featuresxy—1 = (X, %2, ...,Xn—1) @and category . N
labelscy -1 = (€1,C2,. ..,Cn-1), the probability that stimulus :gK‘/gdogr‘ggeurggg?irr\‘/;:rspggpiggot_)g 2rh]b?/bée,§tlf grs];r;g Fl{tsegg-
N with featuresq is assigned to categoiys given by 1995; Rosseel, 2002). Focusing for the moment on the case
NNj Bj of predicting category labels, as in most categorization ex
oMo (1) periments, the problem can be formulated as one of Bayesian
' inference: computing the probability that objéd¢tbelongs
whereny ¢ is the similarity of the stimulugy to categoryc  to categoryj given the features and category labels\of 1
andp. is the response bias for categaryThe key difference  Objects. Applying Bayes' rule, we can write
between the models is in hagy ¢ is computed.

P(cn = jXN,XN—1,CN-1) =

In an exemplar model (e.g., Medin & Schaffer, 1978; P(en = j|XN’XN*1j oN-1) = . ®)
Nosofsky, 1986), a category is represented by all of thedtor P(Xnlen = j,Xn—1,cn—1)P(Cn = j[Cn-1)
instances of that category. The similarity of stimuNig cat- YcP(Xn|cn = ¢, XN-1,Cn-1)P(Cn = Clen-1)

egoryj is calculated by summing the similarity of the stimu-

lus to all stored instances of the category. That is, with the posterior probability of categoiybeing proportional

to the product of the probability of an object with featurgs
NN.j = Z NN ) being produced from that category and the prior probability
Rt ' of choosing that category, taking into account the featanes
labels of the previoubl — 1 objects (assuming that only cate-
whereny,i is a symmetric measure of the similarity betweengory labels influence the prior). Category learning, thes, b
the two stimulixy andx;. In a prototype model (e.g., Reed, comes a matter of determining these probabilities — a pnoble
1972), a category is represented by a single prototypical that is known aslensity estimationDifferent rational models
instance. In this formulation, the similarity of a stimulNgo  vary in how they approach this problem.
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Exemplar and prototype models generating a new object from clusterin categoryj. The

Ashby and Alfonso-Reese (1995) observed a connection p&lusters can either be shared between categories, or specifi
tween the Bayesian solution to the problem of categorizal© @ single category (in which cadézy = k|zy-—1,0n = j) is
tion presented in Equation 5 and the way that choice probQ for all clusters not belonging to categoy It is straight-
abilities are computed in exemplar and prototype modegprward to show thgt this re(_juces to kernel density estima-
(.e. Equation 1). Specificallyjy j can be identified with ~tion when eaqh object has its own cIustgr and. the. clusters
P(xn|cn = j,Xn_1,Cn_1), While B; corresponds to the prior are equallywel_ghted, and parametric density estlmatlmh
probability of categoryj, P(cy = jjcn_1). The difference be- each category is represented by a single cluster. By a simila
tween exemplar and prototype models thus comes down tBrgument to that used for the exemplar model above, we can
different ways of estimating(xn|cn = j,XN_1,CN_1). connec_t Equauon_?_ with thg def!nltlp_n qf_\“- in thg VAM

The definition ofyn j used in an exemplar model (Equation (Eguatlon 4)_, providing a rational justification for this thed
2) corresponds to estimati(Xy|cn = j,Xn_1,Cn_1) as the of interpolating between exemplars and prototypes.
sum of a set of functions (known as “kernels”) centered o

n , . o
thex; already labeled as belonging to categ@ryvith Anderson’s Rational Model of Categorization

The MMC elegantly resolves the question of how to define a

POxulen = Jixn-1,08-2) O Fx, i) (6)  rational model between exemplars and prototypes, but$eave

ilci=] open the issue of determining how many clusters are used in
representing each category — a question about which of these
kinds of representations might be more appropriate based on
the available data. Anderson (1990) introduced a model that
he called the Rational Model of Categorization (RMC), which
esents a partial solution to this problem.
The RMC differs from the other models discussed in this
. . section in assuming that category labels should be treikid |
The definition ofny,j used in a prototype model (Equa- features. Thus, the RMC specifies a joint distribution on fea

tion 3) corresponds to estimatiffxy|cn = j,XN-1,Cn-1) DY tures and category labels, rather than assuming that the dis
assuming that the distribution associated with each catego, ., . ) .
X . . -2 tribution on category labels is estimated separately aed th

comes from an underlying parametric family, and then find- . ; O
. . . combined with a distribution on features for each category.
ing the parameters that best characterize the instancgledab . P . .

) As in the MMC, this distribution is a mixture, with
as belonging to that category. The prototype corresponds to
these parameters. Again, this is a common method for esti-

. o . P(Xn,cn) = ) P(Xn,Cn|zn)P(z 8
mating a probability distribution, known as parametric -den (v, en) % (v, enfzn)P(zn) ®)
sity estimation, in which the distribution is assumed to be o
a known form but with unknown parameters. whereP(zy) is a distribution over clusterings of thé ob-
jects. The key difference from the MMC is that this distribu-

The .Mlxture Model of Categorization _tion allows the number of clusters to be unbounded, with
The interpretation of exemplar and prototype models as dif-

ferent schemes for density estimation suggests that a sim- ak K
ilar interpretation might be found for interpolating mod- P(zn) = W H(Mkfl)! (©)
els. Rosseel (2002) proposed one such model — the Mixture Mi=o k=1

Model of Categorization (MMC) —in which it is assumed that \yhereq is a parameter of the distribution aMj is the num-
P(xnlen = J,xn-1,Cn-1) is @ mixture distribution. Specif-  per of objects assigned to clustet This is the distribu-

ically, the model assumes that each objgatomes from & tjon that results from sequentially assigning objects tes<l
clusterz, and each cluster is associated with a probabilityies with probability

distribution over the features of the objects generaterhfro
that cluster. When evaluating the probability of a new object P(z = Klzi_1) = i—'\J/.I—kH)( My > O (i.e.,k is old)
XN, it |s. nece;sary to sum over all of the clusters from which 4 =K|Zi-1) = a My = 0 (i.e.,k is new)
that object might have been drawn, with

wheref (x,x) is a probability distribution centered an This

is a method that is widely used for approximating distribu-
tions in statistics, being a simple form of nonparametric-de
sity estimation (meaning that it can be used to identifyrdist r
butions without assuming that they come from an underlyingp
parametric family) called kernel density estimation.

B (10)
i—1+a

. where the countdy are accumulated ovey_;. Thus, each
POalen = . xn-1,8-1) = ) object can be assigned to an existing cluster with prokgbili
Ki ) proportional to the number of objects already assignedab th
kzl P(xn|zv = k. Xn-1,Zn-1)P(zv = K|Zn-1,08 = J.tN-1)  cluster, or to a new cluster with probability determinecbby

where Ki is th | number of cl rs for Due to space constraints, we have defined this distribution in the
ereK; is the total number of clusters for categojy form associated with the Dirichlet process, rather than using the idea

P(xn|zn = K Xn-1,2n-1) I the _probabi]ity ofy under _CIUS' of a “coupling probability” from Anderson’s (1990) treatment (see
terk, andP(zy = k|zy—1,Cn = J,Cn-1) is the probability of  Neal, 1998, and Sanborn, Griffiths, & Navarro, 2006, for details).
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y € (0,00) y—
categories share clusters categories share no clusters

Despite having been defined in terms of the joint distri-

bution of xy andcy, the assumption that features and cate- a—0 LR HDP .o
gory labels are independent given clusters makes it p@ssibl _°ne cluster per category > (prototype)
t_o write P(xy|on = j,_xN,l,cN,l) i_n the same form as Equa- di;;fm))er of clustdrs HDP; 4 HDP;
tion 7. The probability of clustek is simply w HDPo s HDPow
one stimulus per cluster (RMC) (exemplar)
P(ZN = k‘ZNfl,CN = j,CNfl) O (11)
P(cn = jlzn =k, zn-1,cn-1)P(zn = K|zn-1) Figure 1: Unifying rational models of categorization. Each

model is specified as HRR), where+ is a value in(0, «).
where the second term on the right hand side is given by

Equation 10. This defines a distribution over the safne

clusters regardless gt but the value oK depends on the to all of the clusters in its group, with the prior probalyildf
number of clusters igy_1. The RMC can thus be viewed as €ach cluster determined by Equation 10. If the observasion i

a form of the mixture model in which all clusters are sharedto be assigned to a new cluster, the new cluster is drawn from
between categories but the number of clusters is infermed fr @ second Dirichlet process that compares the stimulus to all
the data. However, the two models are not directly equitalen of the clusters that have been created across groups. This
because assuming that features and category labels are gé¥richlet process is governed by parameteginalogous ta,
erated based on the clustering induces a dependency betwead the prior probability of each cluster is proportionattte

the two, meaning thagy depends omy_1 as well asy_1, Vi- number of times that cluster has been selected by any group,
olating the (arguably sensible) assumption made by the othénstead of the number of observations in each cluster. The
models and embodied in Equation 5. new observation is only assigned a completely new cluster if

The RMC thus comes close to our goal of specifying a uni-both Dirichlet processes select a new cluster.
fying rational model of categorization, capturing many!u t The HDP provides a way to model probability distributions
ideas embodied in other models and making it possible t@&cross groups of observations. Each distribution is a méxtu
infer a representation warranted by the data. However, thef an unbounded number of clusters, but the clusters can be
model is still significantly limited. First, the analysisvgh  shared between groups. Furthermore, the number of clus-
in the previous paragraph shows that the model assumes thHgr's in each group can vary independently. A priori expecta-
every category is represented using the same set of clusteligns about the number of clusters in a group and the extent
(and thus the same number), an assumption that is inconsit® which clusters are shared between groups are determined
tent with many models that interpolate between prototype®y the parameters andy. Whena is small, each group will
and exemplars (e.g., Vanpaemel et al., 2005). Second, tHeave few clusters, but whem is large, the number of clus-
idea that category labels should be treated like other featu ters will be closer to the number of observations. Wiés
has some odd implications, such as the dependency betwe&mall, groups are likely to share clusters, but wiéslarge,
features and category labels mentioned above. These linthe clusters in each group are likely to be unique.
itations leave room for a model in which each category is o .
directly represented by a different number of clustershwit A unifying rational model
the appropriate number being inferred from the data. We deWe can now define a unifying rational model of categoriza-
velop and test such a model in the remainder of the papetion, based on the HDP. If we identify each category with
by drawing on connections between the RMC and work ina “group” for which we want to estimate a distribution, the

nonparametric Bayesian statistics. HDP instantly becomes a model of category learning, provid-
. ing us with a way to formulate models in which the number
Dirichlet processes and beyond of clusters in each category is learned, and subsumingeall pr

The RMC defines a probability distribution as a mixture of vious rational models through different settingscofindyy.
an unbounded number of clusters. The same idea appearskigure 1 identifies six models we can obtain by considering
nonparametric Bayesian statistics, in the form offiigchlet  limiting values ofa andy.?
process mixture modéhntoniak, 1974; Neal, 1998). In fact, Three of the models shown in Figure 1 are exactly isomor-
the distribution defined by the RMC is exactly the same aghic to existing models. HDP-, is an exemplar model, with
that defined by this model (Neal, 1998; Sanborn et al., 2006)one cluster per object and no sharing of clusters. FPRB a
This equivalence means that we can use recent results gen@rototype model, with one cluster per category and no shar-
alizing the Dirichlet process to identify a richer classatio-  ing of clusters. HDB ;. is the RMC, provided that category
nal models of categorization. labels are treated as features. In HDR every object has its
Teh, Jordan, Blei, and Beal (2004) introduced a generalown cluster, but those clusters are generated from the highe
ization of the Dirichlet process known as theerarchical  level Dirichlet process. Consequently, group membership i

Dirichlet procesgHDP). The basic idea is simple. Observa- mf/a 0 is omitted, since it simply corresponds to a

tions are divided into groups, and each group is modeled Usodel in which all observations belong to the same cluster across all
ing a Dirichlet process. A new observation is first comparedcategories, for all values af.
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ignored and the model reduces to a Dirichlet process. given its cluster, meaning that we can write

There are also several new models. HDQPmakes the P(xulzn = K Xn_1,2n-1) = [1PCwalzn = K Xn 1,28 1)

same basic assumptions as the prototype model, with a single "N/ = O XN-1,2N-1 I:' N.dJZN =K XN-1,2N-1
cluster per category, but makes it possible for differemé-ca

gories to share the same prototype — something that might bgherexy q is the value of thelth feature of objecN. Given
appropriate in an environment where the same category cdfe cluster, the value on each dimension is assumed to have
have different labels. However, the most interesting model@ Bernoulli distribution (although other distributionsnche

are HDPR. | and HDP. .. These models are essentially the used for continuous features). Integrating out the paramet
MMC, with clusters shared between categories or unique t@f this distribution with respect to a Bé{a, lu) prior, we
different categories respectively, but the number of eltssin ~~ obtain

each category can differ and be learned from the data. Conse- My -+ Hy

quently, these models make it possible to answer the questio  P(N.d = V|zn = K Xn-1,2n-1) = m (12)

of whether a particular category is best represented usoig p

totypes, exemplars, or something in between, simply based ovhereM is the number of stimuli with valug on thedth

the structure of that category. In the remainder of the papefeature thaty identifies as belonging to clustter

we show that one of these models — HDP- can capture the ~ All three models were exposed to the same training stimuli
shift that occurs from prototypes to a more exemplar-baseds the human participants, and used to categorize each-stimu

representation in a recent categorization experiment. lus after each segment of 4 blocks. The cluster structures fo
the prototype and exemplar models are fixed, so the probabil-
Modeling the prototype-exemplar transition ity of each category is straightforward to compute. Howgver

since HDR. ., allows arbitrary clusterings, the possible clus-

Smith and Minda (1998) argued that people seem to produc&/ings need to be summed over when computing the proba-
responses that are more consistent with a prototype mod8jlities used in categorization (as in Equation 7). We agpro
early in learning, later shifting to exemplar-based repnes imated thI.S sum py sampling from t_he posterior distribution
tations. The models discussed in the previous section pote@ clusterings using the Markov chain Monte Carlo (MCMC)
tially provide a rational explanation for this effect: theqy  &lgorithm described by Teh et al. (2004). Each set of predic-
specified in Equation 9 prefers fewer clusters and is unflikel tions is based on an MCMC simulation with a burn-in of 1000

to be overwhelmed by small amounts of data to the contranSt€PS; followed by 100 samples separated by 10 steps each.
but as the number of objects consistent with multiple chsste | "€ parameten was also e'st|m.at.ed by sampling.
increases, the representation should shift. These rabutts ~ AS in Smith and Minda’s original modeling of this data,

provide an opportunity to compare the HDP to human data. & guessing parameter was incorporated to allow for the pos-

We focused on the non-linearly separable structure ex§ibi|ity that participants were randomly responding formeo
plored in Experiment 2 of Smith and Minda (1998). In this proportion of the stimuli. The guessing parameter was fit for

. . . . each participant, being fixed across every instance of ever
experiment, 16 participants were presented with six4lette P P 9 Y y

! : ._stimulus for that participant. The values jaf and; were
nonsense words labeled as belonging to different categonealso fit for each participant, with the restriction thgt= p,

Each letter could take one of two values, producing the bI'resulting in two free parameters for each of the models.

nary feature representation shown in Table 1. Each category The predictions of the three models are shown in Figure 2

contains one prototypical stimulus (000000 or 111111), five " ) I
stimuli with five features in common with the prototype, and averaged across participants, and model fits appear ind-igur

one stimulus with only one feature in common with the pro—3' As might be expected, the prototype model does poorly

totvbe. which we will refer to as an “exception”. No linear in predicting the categories of the exceptions, while the ex
yPe, P ) X emplar model is more capable of handling these stimuli. We
function of the features can correctly classify every stimu

meaning that a prototype model will not be able to distiniguis replicated the results of Smith and Minda (1998) in finding

; - that the prototype model fit better early in training (for seg
between the categories exactly. Participants were Ior«ﬂ"‘temments 1-4), and the exemplar model better later in training.

with a random permutation of the 14 stimuli and asked tOHowever, we also found that HDR, provided an equiva-

identify each as belonging to either Category A or Categoni
. . . nt or r nt of human performance than th her
B, receiving feedback after each stimulus. This block of 14e t or better account of human performance than the othe

L X - two models from segment 4 onwards. In particular, only this
stimuli was repeated 40 tlm_es for each participant, andehe r rnodel captured the shift in the treatment of the exceptions
sponses were aggregated into 10 segments of 4 blocks each.

The results are shown in Figure 2 (a). The exceptions were
initially identified as belonging to the wrong category, lwit Table 1: Categories A and B from Smith and Minda (1998)
performance improving later in training.

We tested three models: the exemplar model BRPthe Stimuli
rototype model HDRx, and HDP. . In all three models, 2 1 » 010000, 001000, 10, 1,111101
p yp 100 +,000 ! B | 111111,011111,101111,110111,111011, 111110, 000100

we assumed that the features of each object are independent
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Figure 2: Human data and model predictions. (a) Results dathS&nMinda (1998, Experiment 2). (b) Prototype model,
HDP.,, 0. (c) Exemplar model, HDP. (d) HDP, ... For all panels, white plot markers are stimuli in CategoryAd black are
in Category B. Triangular markers correspond to the exoaptio the prototype structure (111101 and 000100 respégtiv

20 across all contexts, but instead select a representatiosavh
complexity is warranted by the available data.
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