1,670 research outputs found

    Risk Stratification Before and During Treatment in Newly Diagnosed Multiple Myeloma: From Clinical Trials to the Real-World Setting

    Get PDF
    Multiple Myeloma (MM) is a hematologic malignancy characterized by a wide clinical and biological heterogeneity leading to different patient outcomes. Various prognostic tools to stratify newly diagnosed (ND)MM patients into different risk groups have been proposed. At baseline, the standard-of-care prognostic score is the Revised International Staging System (R-ISS), which stratifies patients according to widely available serum markers (i.e., albumin, β 2-microglobulin, lactate dehydrogenase) and high-risk cytogenetic abnormalities detected by fluorescence in situ hybridization. Though this score clearly identifies a low-risk and a high-risk population, the majority of patients are categorized as at “intermediate risk”. Although new prognostic factors identified through molecular assays (e.g., gene expression profiling, next-generation sequencing) are now available and may improve risk stratification, the majority of them need specialized centers and bioinformatic expertise that may preclude their broad application in the real-world setting. In the last years, new tools to monitor response and measurable residual disease (MRD) with very high sensitivity after the start of treatment have been developed. MRD analyses both inside and outside the bone marrow have a strong prognostic impact, and the achievement of MRD negativity may counterbalance the high-risk behavior identified at baseline. All these techniques have been developed in clinical trials. However, their efficient application in real-world clinical practice and their potential role to guide treatment-decision making are still open issues. This mini review will cover currently known prognostic factors identified before and during first-line treatment, with a particular focus on their potential applications in real-world clinical practice

    Next-Generation Beneficial Microbes : The Case of Akkermansia muciniphila

    Get PDF
    Metabolic disorders associated with obesity and cardiometabolic disorders are worldwide epidemic. Among the different environmental factors, the gut microbiota is now considered as a key player interfering with energy metabolism and host susceptibility to several non-communicable diseases. Among the next-generation beneficial microbes that have been identified, Akkermansia muciniphila is a promising candidate. Indeed, A. muciniphila is inversely associated with obesity, diabetes, cardiometabolic diseases and low-grade inflammation. Besides the numerous correlations observed, a large body of evidence has demonstrated the causal beneficial impact of this bacterium in a variety of preclinical models. Translating these exciting observations to human would be the next logic step and it now appears that several obstacles that would prevent the use of A. muciniphila administration in humans have been overcome. Moreover, several lines of evidence indicate that pasteurization of A. muciniphila not only increases its stability but more importantly increases its efficacy. This strongly positions A. muciniphila in the forefront of next-generation candidates for developing novel food or pharma supplements with beneficial effects. Finally, a specific protein present on the outer membrane of A. muciniphila, termed Amuc_1100, could be strong candidate for future drug development. In conclusion, as plants and its related knowledge, known as pharmacognosy, have been the source for designing drugs over the last century, we propose that microbes and microbiomegnosy, or knowledge of our gut microbiome, can become a novel source of future therapies.Peer reviewe

    Fecal Enterobacteriales enrichment is associated with increased in vivo intestinal permeability in humans

    Get PDF
    Type 2 diabetes (T2D) has been linked with increased intestinal permeability, but the clinical significance of this phenomenon remains unknown. The objective of this study was to investigate the potential link between glucose control, intestinal permeability, diet and intestinal microbiota in patients with T2D. Thirty‐two males with well‐controlled T2D and 30 age‐matched male controls without diabetes were enrolled in a case–control study. Metabolic parameters, inflammatory markers, endotoxemia, and intestinal microbiota in individuals subdivided into high (HP) and normal (LP) colonic permeability groups, were the main outcomes. In T2D, the HP group had significantly higher fasting glucose (P = 0.034) and plasma nonesterified fatty acid levels (P = 0.049) compared with the LP group. Increased colonic permeability was also linked with altered abundances of selected microbial taxa. The microbiota of both T2D and control HP groups was enriched with Enterobacteriales. In conclusion, high intestinal permeability was associated with poorer fasting glucose control in T2D patients and changes in some microbial taxa in both T2D patients and nondiabetic controls. Therefore, enrichment in the gram‐negative order Enterobacteriales may characterize impaired colonic permeability prior to/independently from a disruption in glucose tolerance

    Gut microbiome and health : mechanistic insights

    Get PDF
    The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected. In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPAR alpha) and gamma (PPAR gamma), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5). Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.Peer reviewe

    Translation, cross-cultural adaptation, and reliability of the Understanding COPD questionnaire for use in Brazil

    Get PDF
    ABSTRACT Objective: To translate the Understanding COPD (UCOPD) questionnaire into Portuguese, adapt it for use in Brazil, and assess its reliability. Methods: The UCOPD questionnaire consists of two sections, designated section A and section B. Section A comprises 18 items divided into three domains: “About COPD”, “Managing Symptoms of COPD”, and “Accessing Help and Support”. Section B includes five questions regarding patient satisfaction with the educational component of pulmonary rehabilitation programs. The UCOPD questionnaire was applied twice on the same day by two different raters (with a 10-min interval between applications) and once again 15-20 days later. The Wilcoxon test was used in order to compare the scores among applications. Reliability was assessed by the intraclass correlation coefficient and Bland-Altman plots. Results: The study sample consisted of 50 COPD patients (35 men; mean age, 65.3 ± 7.91 years; mean FEV1, 36.4 ± 16.2% of the predicted value). Inter-rater intraclass correlation coefficients for section A total scores and domain scores ranged from moderate to high. Section A scores and domain scores had no significant differences regarding test-retest reliability (p < 0.05). The test-retest and inter-rater Cronbach’s alpha coefficients for section A total scores were 0.93 and 0.86, respectively (p < 0.001). There were no floor or ceiling effects. Conclusions: The Brazilian Portuguese version of the UCOPD questionnaire is reliable

    Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice

    Get PDF
    Accumulating evidence points to Akkermansia muciniphila as a novel candidate to prevent or treat obesity-related metabolic disorders. We recently observed, in mice and in humans, that pasteurization of A. muciniphila increases its beneficial effects on metabolism. However, it is currently unknown if the observed beneficial effects on body weight and fat mass gain are due to specific changes in energy expenditure. Therefore, we investigated the effects of pasteurized A. muciniphila on whole-body energy metabolism during high-fat diet feeding by using metabolic chambers. We confirmed that daily oral administration of pasteurized A. muciniphila alleviated diet-induced obesity and decreased food energy efficiency. We found that this effect was associated with an increase in energy expenditure and spontaneous physical activity. Strikingly, we discovered that energy expenditure was enhanced independently from changes in markers of thermogenesis or beiging of the white adipose tissue. However, we found in brown and white adipose tissues that perilipin2, a factor associated with lipid droplet and known to be altered in obesity, was decreased in expression by pasteurized A. muciniphila. Finally, we observed that treatment with pasteurized A. muciniphila increased energy excretion in the feces. Interestingly, we demonstrated that this effect was not due to the modulation of intestinal lipid absorption or chylomicron synthesis but likely involved a reduction of carbohydrates absorption and enhanced intestinal epithelial turnover. In conclusion, this study further dissects the mechanisms by which pasteurized A. muciniphila reduces body weight and fat mass gain. These data also further support the impact of targeting the gut microbiota by using specific bacteria to control whole-body energy metabolism.Peer reviewe

    The endocannabinoid system links gut microbiota to adipogenesis

    Get PDF
    We investigated several models of gut microbiota modulation: selective (prebiotics, probiotics, high-fat), drastic (antibiotics, germ-free mice) and mice bearing specific mutations of a key gene involved in the toll-like receptors (TLR) bacteria-host interaction (Myd88−/−). Here we report that gut microbiota modulates the intestinal endocannabinoid (eCB) system-tone, which in turn regulates gut permeability and plasma lipopolysaccharide (LPS) levels.The activation of the intestinal endocannabinoid system increases gut permeability which in turn enhances plasma LPS levels and inflammation in physiological and pathological conditions such as obesity and type 2 diabetes.The investigation of adipocyte differentiation and lipogenesis (both markers of adipogenesis) indicate that gut microbiota controls adipose tissue physiology through LPS-eCB system regulatory loops and may play a critical role in the adipose tissue plasticity during obesity.In vivo, ex vivo and in vitro studies indicate that LPS acts as a master switch on adipose tissue metabolism, by blocking the cannabinoid-driven adipogenesis
    corecore