12 research outputs found

    International Freedom of Information

    Get PDF

    36th Commencement Address

    Get PDF

    The Armed Forces and Public Information in War and Peace

    Get PDF
    I don\u27t know that we Americans have learned the significance of public information as quickly or perhaps even as completely as some of our enemies. A good deal has come to light in the last decade about public information and its uses-a good deal that is revealing and very important

    The Trail, 1965-02-26

    Get PDF
    https://soundideas.pugetsound.edu/thetrail_all/1903/thumbnail.jp

    Does shade improve light interception efficiency? A comparison among seedlings from shade-tolerant and -intolerant temperate deciduous tree species

    Get PDF
    • Here, we tested two hypotheses: shading increases light interception efficiency (LIE) of broadleaved tree seedlings, and shade-tolerant species exhibit larger LIEs than do shade-intolerant ones. The impact of seedling size was taken into account to detect potential size-independent effects on LIE. LIE was defined as the ratio of mean light intercepted by leaves to light intercepted by a horizontal surface of equal area. • Seedlings from five species differing in shade tolerance (Acer saccharum, Betula alleghaniensis, A. pseudoplatanus, B. pendula, Fagus sylvatica) were grown under neutral shading nets providing 36, 16 and 4% of external irradiance. Seedlings (1- and 2-year-old) were three-dimensionally digitized, allowing calculation of LIE. • Shading induced dramatic reduction in total leaf area, which was lowest in shade-tolerant species in all irradiance regimes. Irradiance reduced LIE through increasing leaf overlap with increasing leaf area. There was very little evidence of significant size-independent plasticity of LIE. • No relationship was found between the known shade tolerance of species and LIE at equivalent size and irradiance

    [Clipping: The opportunity]

    No full text
    Newspaper clipping discussing Watergate as a lesson

    Experiments towards size and dopant control of germanium quantum dots for solar applications

    No full text
    While the literature for the doping of silicon quantum dots (QDs) and nanocrystals (NCs) is extensive, reports of doping their germanium analogs are sparse. We report a range of attempts to dope Ge QDs both during and post-synthesis. The QDs have been characterized by TEM, XPS, and I/V measurements of SiO<sub>2</sub> coated QD thin films in test cells using doped Si substrates. The solution synthesis of Ge QDs by the reduction of GeCl<sub>4</sub> with LiAlH<sub>4</sub> results in Ge QDs with a low level of chlorine atoms on the surface; however, during the H<sub>2</sub>PtCl<sub>6</sub> catalyzed alkylation of the surface with allylamine, to enable water solubility of the Ge QDs, chlorine functionalization of the surface occurs resulting in p-type doping of the QD. A similar location of the dopant is proposed for phosphorus when incorporated by the addition of PCl<sub>3</sub> during QD synthesis; however, the electronic doping effect is greater. The detected dopants are all present on the surface of the QD (<em>s</em>-type), suggesting a self-purification process is operative. Attempts to incorporate boron or gallium during synthesis were unsuccessful
    corecore