78 research outputs found

    Effect of Dietary Components on Larval Life History Characteristics in the Medfly (Ceratitis capitata: Diptera, Tephritidae)

    Get PDF
    Background: The ability to respond to heterogenous nutritional resources is an important factor in the adaptive radiation of insects such as the highly polyphagous Medfly. Here we examined the breadth of the Medfly’s capacity to respond to different developmental conditions, by experimentally altering diet components as a proxy for host quality and novelty. Methodology/Principal Findings: We tested responses of larval life history to diets containing protein and carbohydrate components found in and outside the natural host range of this species. A 40% reduction in the quantity of protein caused a significant increase in egg to adult mortality by 26.5%±6% in comparison to the standard baseline diet. Proteins and carbohydrates had differential effects on larval versus pupal development and survival. Addition of a novel protein source, casein (i.e. milk protein), to the diet increased larval mortality by 19.4%±3% and also lengthened the duration of larval development by 1.93±0.5 days in comparison to the standard diet. Alteration of dietary carbohydrate, by replacing the baseline starch with simple sugars, increased mortality specifically within the pupal stage (by 28.2%±8% and 26.2%±9% for glucose and maltose diets, respectively). Development in the presence of the novel carbohydrate lactose (milk sugar) was successful, though on this diet there was a decrease of 29.8±1.6 µg in mean pupal weight in comparison to pupae reared on the baseline diet. Conclusions: The results confirm that laboratory reared Medfly retain the ability to survive development through a wide range of fluctuations in the nutritional environment. We highlight new facets of the responses of different stages of holometabolous life histories to key dietary components. The results are relevant to colonisation scenarios and key to the biology of this highly invasive species

    Supramolecular coordination chemistry of aromatic polyoxalamide ligands: A metallosupramolecular approach toward functional magnetic materials

    Get PDF
    The impressive potential of the metallosupramolecular approach in designing new functional magnetic materials constitutes a great scientific challenge for the chemical research community that requires an interdisciplinary collaboration. New fundamental concepts and future applications in nanoscience and nanotechnology will emerge from the study of magnetism as a supramolecular function in metallosupramolecular chemistry. Our recent work on the rich supramolecular coordination chemistry of a novel family of aromatic polyoxalamide (APOXA) ligands with first-row transition metal ions has allowed us to move one step further in the rational design of metallosupramolecular assemblies of increasing structural and magnetic complexity. Thus, we have taken advantage of the new developments of metallosupramolecular chemistry and, in particular, the molecular-programmed self-assembly methods that exploit the coordination preferences of paramagnetic metal ions and suitable designed polytopic ligands. The resulting self-assembled di- and trinuclear metallacyclic complexes with APOXA ligands, either metallacyclophanes or metallacryptands, are indeed ideal model systems for the study of the electron exchange mechanism between paramagnetic metal centers through extended π-conjugated aromatic bridges. So, the influence of different factors such as the topology and conformation of the bridging ligand or the electronic configuration and magnetic anisotropy of the metal ion have been investigated in a systematic way. These oligonuclear metallacyclic complexes can be important in the development of a new class of molecular magnetic devices, such as molecular magnetic wires (MMWs) and switches (MMSs), which are major goals in the field of molecular electronics and spintronics. On the other hand, because of their metal binding capacity through the outer carbonyl-oxygen atoms of the oxamato groups, they can further be used as ligands, referred to as metal–organic ligands (MOLs), toward either coordinatively unsaturated metal complexes or fully solvated metal ions. This well-known “complex-as-ligand” approach affords a wide variety of high-nuclearity metal–organic clusters (MOCs) and high-dimensionality metal–organic polymers (MOPs). The judicious choice of the oligonuclear MOL, ranging from mono- to di- and trinuclear species, has allowed us to control the overall structure and magnetic properties of the final oxamato-bridged multidimensional (nD, n = 0–3) MOCs and MOPs. The intercrossing between short- (nanoscopic) and long-range (macroscopic) magnetic behavior has been investigated in this unique family of oxamato-bridged metallosupramolecular magnetic materials expanding the examples of low-dimensional, single-molecule (SMMs) and single-chain (SCMs) magnets and high-dimensional, open-framework magnets (OFMs), which are brand-new targets in the field of molecular magnetism and materials science

    Evaluation of postural balance in postmenopausal women and its relationship with bone mineral density- a cross sectional study

    Get PDF
    Background: Low bone mineral density (BMD) and falls are common problems encountered in the postmenopausal women. The purpose was to evaluate the association between postural balance and BMD in postmenopausal women and its relation to risk for falls.Methods: In this cross-sectional study, 225 women in amenorrhea > 12 months and age >= 45 years were included and divided, according to BMD, in T-score values > -2.0 SD (n = 140) and <= -2 SD (n = 85). Those with neurological or musculoskeletal disorders, history of vestibulopathies, uncorrected visual deficit or drug use that could affect balance were excluded. History of falls (last 24 months), clinical and anthropometric characteristics were evaluated. Postural balance was assessed by stabilometry (force platform). For statistical analysis were used Wilcoxon's Test, Chi-Square Test and logistic regression method for fall risk (Odds Ratio-OR).Results: Patients with BMD > -2.0 SD were younger, with shorter time since menopause, and showed higher BMI as compared to those with low BMD (<= -2 SD) (p < 0.05). It was observed that 57.8% of the participants reported fall episodes without significant difference distribution between the groups (p = 0.055). No differences were found from the comparison between the groups (p > 0.05) for stabilometric parameters. Risk for falls increased with age (OR 1.07; CI 95% 1.01-1.13), current smoking (OR 2.19; CI 95% 1.22-3.21) and corrected visual deficit (OR 9.06; CI 95% 1.14-4.09). In contrast, hormone therapy (HT) use was significantly associated with reduced risk for falls (OR 0.48; CI 95% 0.26-0.88).Conclusions: In postmenopausal women, BMD did not show association with postural balance or risk for falls. Age, smoking and corrected visual deficit were clinical indicators of risk for falls whereas HT use showed to be a protective factor

    Intra-regional transportation of a tugboat fouling community between the ports of recife and natal, northeast Brazil

    Full text link
    corecore