13 research outputs found

    Impact of platelet phenotype on myocardial infarction

    Get PDF
    In acute myocardial infarction patients the injured vascular wall triggers thrombus formation in the damage site. Fibrin fibers and blood cellular elements are the major components of thrombus formed in acute occlusion of coronary arteries. It has been established that the initial thrombus is primarily composed of activated platelets rapidly stabilized by fibrin fibers. This review highlights the role of platelet membrane phenotype in pathophysiology of myocardial infarction. Here, we regard platelet phenotype as quantitative and qualitative parameters of the plasma membrane outer surface, which are crucial for platelet participation in blood coagulation, development of local inflammation and tissue repair

    Concise Review: Cellular Therapies: The Potential to Regenerate and Restore Tolerance in Immune-Mediated Intestinal Diseases

    No full text
    Chronic inflammatory enteropathies, including celiac disease, Crohn's disease, and ulcerative colitis, are lifelong disabling conditions whose cure is still an unmet need, despite the great strides made in understanding their complex pathogenesis. The advent of cellular therapies, mainly based on the use of stem cells, represents a great step forward thanks to their multitarget strategy. Both hematopoietic stem cells (HSC) and mesenchymal stem/stromal cells (MSC) have been employed in the treatment of refractory cases with promising results. The lack of immunogenicity makes MSC more suitable for therapeutic purposes as their infusion may be performed across histocompatibility locus antigen barriers without risk of rejection. The best outcome has been obtained when treating fistulizing Crohn's disease with local injections of MSC. In addition, both HSC and MSC proved successful in promoting regeneration of intestinal mucosa, and favoring the expansion of a T-cell regulatory subset. By virtue of the ability to favor mucosal homeostasis, this last cell population has been exploited in clinical trials, with inconsistent results. Finally, the recent identification of the epithelial stem cell marker has opened up the possibility of tissue engineering, with an array of potential applications for intestinal diseases. However, the underlying mechanisms of action of these interconnected therapeutic strategies are still poorly understood. It is conceivable that over the next few years their role will become clearer as the biological interactions with injured tissues and the hierarchy by which they deliver their action are unraveled through a continuous moving from bench to bedside and vice versa. Stem Cells 2016;34:1474-1486

    Are stem cells a potential therapeutic tool in coeliac disease?

    No full text
    Despite the growing understanding of its pathogenesis, the treatment of coeliac disease is still based on a lifelong gluten-free diet that, although efficacious, is troublesome for affected patients, and a definitive cure is still an unmet need. In this regard, the development of new chemical- and biological-derived agents has often resulted in unsatisfactory effects when tested in vivo, probably because of their ability to target only a single pathway, whilst the immunological cascade responsible for tissue injury is complex and redundant. The advent of cellular therapies, mainly based on the use of stem cells, is an emerging area of interest since it has the advantage of a multi-target strategy. Both haematopoietic and mesenchymal stem cells have been employed in the treatment of refractory patients suffering from autoimmune diseases, with promising results. However, the lack of immunogenicity makes mesenchymal stem cells more suitable than their haematopoietic counterpart, since their transplantation may be performed in the absence of a myeloablative conditioning regimen. In addition, mesenchymal stem cells have been shown to harbour strong modulatory effects on almost all cells involved in immune response, together with a potent regenerative action. It is therefore conceivable that over the next few years their therapeutic use will increase as their biological interactions with injured tissues become clearer

    Validation of shortened 2-day sterility testing of mesenchymal stem cell-based therapeutic preparation on an automated culture system

    No full text
    Cell therapy products represent a new trend of treatment in the field of immunotherapy and regenerative medicine. Their biological nature and multistep preparation procedure require the application of complex release criteria and quality control. Microbial contamination of cell therapy products is a potential source of morbidity in recipients. The automated blood culture systems are widely used for the detection of microorganisms in cell therapy products. However the standard 2-week cultivation period is too long for some cell-based treatments and alternative methods have to be devised. We tried to verify whether a shortened cultivation of the supernatant from the mesenchymal stem cell (MSC) culture obtained 2 days before the cell harvest could sufficiently detect microbial growth and allow the release of MSC for clinical application. We compared the standard Ph. Eur. cultivation method and the automated blood culture system BACTEC (Becton Dickinson). The time to detection (TTD) and the detection limit were analyzed for three bacterial and two fungal strains. The Staphylococcus aureus and Pseudomonas aeruginosa were recognized within 24 h with both methods (detection limit ~10 CFU). The time required for the detection of Bacillus subtilis was shorter with the automated method (TTD 10.3 vs. 60 h for 10-100 CFU). The BACTEC system reached significantly shorter times to the detection of Candida albicans and Aspergillus brasiliensis growth compared to the classical method (15.5 vs. 48 and 31.5 vs. 48 h, respectively; 10-100 CFU). The positivity was demonstrated within 48 h in all bottles, regardless of the size of the inoculum. This study validated the automated cultivation system as a method able to detect all tested microorganisms within a 48-h period with a detection limit of ~10 CFU. Only in case of B. subtilis, the lowest inoculum (~10 CFU) was not recognized. The 2-day cultivation technique is then capable of confirming the microbiological safety of MSC and allows their timely release for clinical application

    Tolerogenic effect of mesenchymal stromal cells on gliadin-specific T lymphocytes in celiac disease

    No full text
    Celiac disease is caused by a dysregulated immune response toward dietary gluten, whose only treatment is a lifelong gluten-free diet. We investigated the effects of mesenchymal stromal cells (MSCs) on gliadin-specific T cells, which are known to induce intestinal lesions, in view of a possible use as new therapy

    The Circulating Level of Soluble Receptor for Advanced Glycation End Products Displays Different Patterns in Ulcerative Colitis and Crohn's Disease: A Cross-Sectional Study

    No full text
    RAGE is a transmembrane receptor expressed on immune and endothelial cells, whose binding with its ligands, the S100 calgranulins, leads to chronic inflammation. Conversely, its soluble form (sRAGE) plays a protective role by acting as a decoy. We carried out a cross-sectional analysis of the sRAGE and S100A12 serum levels in patients with Crohn's disease (CD) and ulcerative colitis (UC) and searched for a correlation with clinical and biological markers of activity

    Role of the advanced glycation end products receptor in Crohn's disease inflammation

    No full text
    To investigate the level of mucosal expression and the involvement of the receptor for the advanced glycation end products (RAGE) in delayed apoptosis and tumor necrosis factor (TNF)-\u3b1 production in Crohn's disease (CD)

    Proceedings of the signature series event of the international society for cellular therapy: "Advancements in cellular therapies and regenerative medicine in digestive diseases," London, United Kingdom, May 3, 2017.

    Get PDF
    A summary of the First Signature Series Event, "Advancements in Cellular Therapies and Regenerative Medicine for Digestive Diseases," held on May 3, 2017, in London, United Kingdom, is presented. Twelve speakers from three continents covered major topics in the areas of cellular therapy and regenerative medicine applied to liver and gastrointestinal medicine as well as to diabetes mellitus. Highlights from their presentations, together with an overview of the global impact of digestive diseases and a proposal for a shared online collection and data-monitoring platform tool, are included in this proceedings. Although growing evidence demonstrate the feasibility and safety of exploiting cell-based technologies for the treatment of digestive diseases, regulatory and methodological obstacles will need to be overcome before the successful implementation in the clinic of these novel attractive therapeutic strategies

    Additional file 1: of Ex vivo immunosuppressive effects of mesenchymal stem cells on Crohn’s disease mucosal T cells are largely dependent on indoleamine 2,3-dioxygenase activity and cell-cell contact

    No full text
    Mesenchymal stem cells with T cells from inflamed Crohn’s mucosa. Representative time-lapse imaging of a co-culture with bone marrow-derived mesenchymal stem cells of a healthy donor and T cells isolated from inflamed mucosa of a patient with Crohn’s disease. A dynamic and intense interaction is clearly evident mostly during the first 6 h, when the binding between these two cell populations is non-fixed but instead appears as a continuous attachment and detachment, after which a growing number of cells with morphological features of apoptosis (those with nuclear fragmentation and cellular swelling) and apoptotic bodies become evident. The images were serially recorded every 30 min for 12 h. Magnification: 100×. (ZIP 6780 kb
    corecore