2,910 research outputs found

    Magnetic ordering in GdNi2B2C revisited by resonant x-ray scattering: evidence for the double-q model

    Get PDF
    Recent theoretical efforts aimed at understanding the nature of antiferromagnetic ordering in GdNi2B2C predicted double-q ordering. Here we employ resonant elastic x-ray scattering to test this theory against the formerly proposed, single-q ordering scenario. Our study reveals a satellite reflection associated with a mixed-order component propagation wave vector, viz., (q_a,2q_b,0) with q_b = q_a approx= 0.55 reciprocal lattice units, the presence of which is incompatible with single-q ordering but is expected from the double-q model. A (3q_a,0,0) wave vector (i.e., third-order) satellite is also observed, again in line with the double-q model. The temperature dependencies of these along with that of a first-order satellite are compared with calculations based on the double-q model and reasonable qualitative agreement is found. By examining the azimuthal dependence of first-order satellite scattering, we show the magnetic order to be, as predicted, elliptically polarized at base temperature and find the temperature dependence of the "out of a-b plane" moment component to be in fairly good agreement with calculation. Our results provide qualitative support for the double-q model and thus in turn corroborate the explanation for the "magnetoelastic paradox" offered by this model.Comment: 8 pages, 5 figures. Submitted to Phys. Rev.

    Drastic annealing effects in transport properties of single crystals of the YbNi2B2C heavy fermion system

    Full text link
    We report temperature dependent resistivity, specific heat, magnetic susceptibility and thermoelectric power measurements made on the heavy fermion system YbNi2B2C, for both as grown and annealed single crystals. Our results demonstrate a significant variation in the temperature dependent electrical resistivity and thermoelectric power between as grown crystals and crystals that have undergone optimal (150 hour, 950 C) annealing, whereas the thermodynamic properties: (c_p(T) and chi(T)) remain almost unchanged. We interpret these results in terms of redistributions of local Kondo temperatures associated with ligandal disorder for a small (~ 1%) fraction of the Yb sites.Comment: 5 pages, 4 figures, submitted to PR

    Magnetic and superconducting phase diagrams in ErNi2B2C

    Get PDF
    We present measurements of the superconducting upper critical field Hc2(T) and the magnetic phase diagram of the superconductor ErNi2B2C made with a scanning tunneling microscope (STM). The magnetic field was applied in the basal plane of the tetragonal crystal structure. We have found large gapless regions in the superconducting phase diagram of ErNi2B2C, extending between different magnetic transitions. A close correlation between magnetic transitions and Hc2(T) is found, showing that superconductivity is strongly linked to magnetism.Comment: 5 pages, 4 figure

    Intrinsic pinning on structural domains in underdoped single crystals of Ba(Fe1x_{1-x}Cox_x)2_2As2_2

    Full text link
    Critical current density was studied in single crystals of Ba(Fe1x_{1-x}Cox_x)2_2As2_2 for the values of xx spanning the entire doping phase diagram. A noticeable enhancement was found for slightly underdoped crystals with the peak at x=0.058x = 0.058. Using a combination of polarized-light imaging, x-ray diffraction and magnetic measurements we associate this behavior with the intrinsic pinning on structural domains in the orthorhombic phase. Domain walls extend throughout the sample thickness in the direction of vortices and act as extended pinning centers. With the increasing xx domain structure becomes more intertwined and fine due to a decrease of the orthorhombic distortion. This results in the energy landscape with maze-like spatial modulations favorable for pinning. This finding shows that iron-based pnictide superconductors, characterized by high values of the transition temperature, high upper critical fields, and low anisotropy may intrinsically have relatively high critical current densities.Comment: estimation of Jc correcte

    Direct observation of Fe spin reorientation in single crystalline YbFe6Ge6

    Full text link
    We have grown single crystals of YbFe6Ge6 and LuFe6Ge6 and characterized their anisotropic behaviour through low field magnetic susceptibility, field-dependent magnetization, resistivity and heat capacity measurements. The Yb+3 valency is confirmed by LIII XANES measurements. YbFe6Ge6 crystals exhibit a field-dependent, sudden reorientation of the Fe spins at about 63 K, a unique effect in the RFe6Ge6 family (R = rare earths) where the Fe ions order anti-ferromagnetically with Neel temperatures above 450 K and the R ions' magnetism appears to behave independently. The possible origins of this unusual behaviour of the ordered Fe moments in this compound are discussed.Comment: 12 pages, 8 figures, accepted in J. Phys.: Cond. Matte

    Ferromagnetism or slow paramagnetic relaxation in Fe-doped Li3_3N?

    Get PDF
    We report on isothermal magnetization, M\"ossbauer spectroscopy, and magnetostriction as well as temperature-dependent alternating-current (ac) susceptibility, specific heat, and thermal expansion of single crystalline and polycrstalline Li2_2(Li1x_{1-x}Fex_x)N with x=0x = 0 and x0.30x \approx 0.30. Magnetic hysteresis emerges at temperatures below T50T \approx 50\,K with coercivity fields of up to μ0H=11.6\mu_0H = 11.6\,T at T=2T = 2\,K and magnetic anisotropy energies of 310310\,K (2727\,meV). The ac susceptibility is strongly frequency dependent (f=10f\,=\,10--10,00010,000\,Hz) and reveals an effective energy barrier for spin reversal of ΔE1100\Delta E \approx 1100\,K. The relaxation times follow Arrhenius behavior for T>25T > 25\,K. For T<10T < 10\,K, however, the relaxation times of τ1010\tau \approx 10^{10}\,s are only weakly temperature-dependent indicating the relevance of a quantum tunneling process instead of thermal excitations. The magnetic entropy amounts to more than 2525\,J molFe1^{-1}_{\rm Fe}\,K1^{-1} which significantly exceeds RRln2, the value expected for the entropy of a ground state doublet. Thermal expansion and magnetostriction indicate a weak magneto-elastic coupling in accordance with slow relaxation of the magnetization. The classification of Li2_2(Li1x_{1-x}Fex_x)N as ferromagnet is stressed and contrasted with highly anisotropic and slowly relaxing paramagnetic behavior.Comment: 12 pages, 10 figure

    Anisotropy Reversal of the Upper Critical Field at Low Temperatures and Spin-Locked Superconductivity in K2Cr3As3

    Get PDF
    We report the first measurements of the anisotropic upper critical field Hc2(T)H_{c2}(T) for K2_{2}Cr3_{3}As3_{3} single crystals up to 60 T and T>0.6T > 0.6 K. Our results show that the upper critical field parallel to the Cr chains, Hc2(T)H_{c2}^\parallel (T), exhibits a paramagnetically-limited behavior, whereas the shape of the Hc2(T)H_{c2}^\perp (T) curve (perpendicular to the Cr chains) has no evidence of paramagnetic effects. As a result, the curves Hc2(T)H_{c2}^\perp (T) and Hc2(T)H_{c2}^\parallel(T) cross at T4T\approx 4 K, so that the anisotropy parameter γH(T)=Hc2/Hc2(T)\gamma_H(T)=H_{c2}^\perp/H_{c2}^\parallel (T) increases from γH(Tc)0.35\gamma_H(T_c)\approx 0.35 near TcT_c to γH(0)1.7\gamma_H(0)\approx 1.7 at 0.6 K. This behavior of Hc2(T)H_{c2}^\|(T) is inconsistent with triplet superconductivity but suggests a form of singlet superconductivity with the electron spins locked onto the direction of Cr chains

    Ingredients for the electronic nematic phase in FeSe revealed by its anisotropic optical response

    Get PDF
    The origin of the anisotropy in physical quantities related to a symmetry-broken (nematic) electronic state is still very much debated in high-temperature superconductors. FeSe at ambient pressure undergoes a structural, tetragonal-to-orthorhombic phase transition at Ts≃90 K without any magnetic ordering on further cooling, which leads to an ideal electronic nematicity. Our unprecedented optical results provide evidence that the low-energy excitation spectrum in the nematic phase is shaped by an important interplay of the anisotropic Drude weight and scattering rate. In the zero-frequency limit though, the temperature dependence of the anisotropic scattering rate plays the dominant role and, combined with the nematic order parameter as evinced from the high energy optical response, accounts for the anisotropic dc resistivity. This favors the scattering by anisotropic spin fluctuations as the prominent candidate in governing the properties of the nematic phase

    Structural optimization of framed structures using generalized optimality criteria

    Get PDF
    The application of a generalized optimality criteria to framed structures is presented. The optimality conditions, Lagrangian multipliers, resizing algorithm, and scaling procedures are all represented as a function of the objective and constraint functions along with their respective gradients. The optimization of two plane frames under multiple loading conditions subject to stress, displacement, generalized stiffness, and side constraints is presented. These results are compared to those found by optimizing the frames using a nonlinear mathematical programming technique

    Imaging Orbital-selective Quasiparticles in the Hund's Metal State of FeSe

    Get PDF
    Strong electronic correlations, emerging from the parent Mott insulator phase, are key to copper-based high temperature superconductivity (HTS). By contrast, the parent phase of iron-based HTS is never a correlated insulator. But this distinction may be deceptive because Fe has five active d-orbitals while Cu has only one. In theory, such orbital multiplicity can generate a Hund's Metal state, in which alignment of the Fe spins suppresses inter-orbital fluctuations producing orbitally selective strong correlations. The spectral weights ZmZ_m of quasiparticles associated with different Fe orbitals m should then be radically different. Here we use quasiparticle scattering interference resolved by orbital content to explore these predictions in FeSe. Signatures of strong, orbitally selective differences of quasiparticle ZmZ_m appear on all detectable bands over a wide energy range. Further, the quasiparticle interference amplitudes reveal that Zxy<Zxz<<ZyzZ_{xy}<Z_{xz}<<Z_{yz}, consistent with earlier orbital-selective Cooper pairing studies. Thus, orbital-selective strong correlations dominate the parent state of iron-based HTS in FeSe.Comment: for movie M1, see http://www.physik.uni-leipzig.de/~kreisel/osqp/M1.mp4, for movie M2, see http://www.physik.uni-leipzig.de/~kreisel/osqp/M2.mp4, for movie M3, see http://www.physik.uni-leipzig.de/~kreisel/osqp/M3.mp4, for movie M4, see http://www.physik.uni-leipzig.de/~kreisel/osqp/M4.mp4, for movie M5, see http://www.physik.uni-leipzig.de/~kreisel/osqp/M5.mp
    corecore