185 research outputs found

    Effects of stoichiometry, purity, etching and distilling on resistance of MgB2 pellets and wire segments

    Full text link
    We present a study of the effects of non-stoichiometry, boron purity, wire diameter and post-synthesis treatment (etching and Mg distilling) on the temperature dependent resistance and resistivity of sintered MgB2 pellets and wire segments. Whereas the residual resistivity ratio (RRR) varies between RRR \~ 4 to RRR > 20 for different boron purity, it is only moderately affected by non-stoichiometry (from 20% Mg deficiency to 20% Mg excess) and is apparently independent of wire diameter and presence of Mg metal traces on the wire surface. The obtained set of data indicates that RRR values in excess of 20 and residual resistivities as low as rho{0} ~ 0.4 mu Ohm cm are intrinsic material properties of high purity MgB2

    Angular dependent planar metamagnetism in the hexagonal compounds TbPtIn and TmAgGe

    Get PDF
    Detailed magnetization measurements, M(T,H,theta), were performed on single crystals of TbPtIn and TmAgGe (both members of the hexagonal Fe_2P/ZrNiAl structure type), for the magnetic field H applied perpendicular to the crystallographic c axis. These data allowed us to identify, for each compound, the easy-axes for the magnetization, which coincided with high symmetry directions ([120] for TbPtIn and [110] for TmAgGe). For fixed orientations of the field along each of the two six-fold symmetry axes, a number of magnetically ordered phases is being revealed by M(H,T) measurements below T_N. Moreover, T ~ 2 K, M(H)|_theta measurements for both compounds (with H applied parallel to the basal plane), as well as T = 20 K data for TbPtIn, reveal five metamagnetic transitions with simple angular dependencies: H_{ci,j} ~ 1/cos(theta +/- phi), where phi = 0^0 or 60^0. The high field magnetization state varies with theta like 2/3*mu_{sat}(R^{3+})*cos(theta), and corresponds to a crystal field limited saturated paramagnetic, CL-SPM, state. Analysis of these data allowed us to model the angular dependence of the locally saturated magnetizations M_{sat} and critical fields H_c with a three coplanar Ising-like model, in which the magnetic moments are assumed to be parallel to three adjacent easy axes. Furthermore, net distributions of moments were inferred based on the measured data and the proposed model

    Unconventional electronic Raman spectra of borocarbide superconductors

    Full text link
    Borocarbide superconductors, which are thought to be conventional BCS-type superconductors, are not so conventional in several electronic Raman properties. Anisotropic gap-like features and finite scattering strength below the gap were observed for the RRNi2_2B2_2C (RR = Lu, Y) systems in our previous study. The effects of Co-doping on the 2Δ\Delta gap-like features and the finite scattering strength below and above the gap are studied in RR = Lu (B = B11^{11}) system. In superconducting states, Co-doping strongly suppresses the 2Δ\Delta peak in both B2g_{2g} and B1g_{1g} symmetries. Raman cross-section calculation which includes inelastic scattering shows a relatively good fit to the features above the 2Δ\Delta peak, while it does not fully account for the features below the peak.Comment: 2 pages, 1 figur

    Titanium additions to MgB2 conductors

    Full text link
    A series of doping experiments are reported for MgB2 conductors that have been synthesized using doped boron fibers prepared by chemical vapor deposition(CVD) methods. Undoped MgB2 samples prepared from CVD prepared fibers consistently give critical current densities, Jc, in the range of 500,000 A/cm^2 in low field at 5K. These values fall by a factor of about 100 as the magnetic field increases to 3T. For heavily Ti-doped boron fibers where the B/Ti ratio is comparable to 1, there is a substantial suppression of both Tc, superconducting volume fraction, and Jc values. If, however, a sample with a few percent Ti in B is deposited on a carbon coated SiC substrate and reacted at 1100 degrees C for 15 min, then Tc is suppressed only a couple of degrees Kelvin and critical current densities are found to be approximately 2-5 x 10^6 A/cm^2 for superconducting layers ranging from 4-10 micrometers thick. These materials show Jc values over 10,000 A/cm^2 at 25K and 1.3 T.Comment: 10 pages, 6 figure

    Synthesis and Processing of MgB2MgB_2 powders and wires

    Full text link
    Sintered powders and wires of superconducting MgB2MgB_2 have been fabricated under a variety of conditions in order to determine details of the diffusion of the MgMg into BB and to study the types of defects that arise during growth. For samples prepared by exposure of boron to MgMg vapor at 950C950^{\circ}C, the conversion of particles of less than 100μm100\mu m size particles to MgB2MgB_2 is complete in about 2h2 h. The lattice parameters of the MgB2MgB_2 phase determined from X-ray are independent of the starting stoichiometry and the time of reaction. Wire segments of MgB2MgB_2 with very little porosity have been produced by reacting 141μm141 \mu m diameter boron fibers in an atmosphere of excess MgMg vapor at 950C950^{\circ}C. Defects in the reacted fibers are predominantly the voids left as the boron is converted to MgB2MgB_2

    Magnetic Phase Diagram of GdNi2B2C: Two-ion Magnetoelasticity and Anisotropic Exchange Couplings

    Full text link
    Extensive magnetization and magnetostriction measurements were carried out on a single crystal of GdNi2B2C along the main tetragonal axes. Within the paramagnetic phase, the magnetic and strain susceptibilities revealed a weak anisotropy in the exchange couplings and two-ion tetragonal-preserving alpha-strain modes. Within the ordered phase, magnetization and magnetostriction revealed a relatively strong orthorhombic distortion mode and rich field-temperature phase diagrams. For H//(100) phase diagram, three field-induced transformations were observed, namely, at: Hd(T), related to the domain alignment; Hr(T), associated with reorientation of the moment towards the c-axis; and Hs(T), defining the saturation process wherein the exchange field is completely counterbalanced. On the other hand, For H//(001) phase diagram, only two field-induced transformations were observed, namely at: Hr(T) and Hs(T). For both phase diagrams, Hs(T) follows the relation Hs[1-(T/Tn)^2]^(1/2)kOe with Hs(T-->0)=128.5(5) kOe and Tn(H=0)=19.5 K. In contrast, the thermal evolution of Hr(T) along the c-axis (much simpler than along the a-axis) follows the relation Hr[1-T/Tr]^(1/3) kOe where Hr(T-->0)=33.5(5) kOe and Tr(H=0)=13.5 K. It is emphasized that the magnetoelastic interaction and the anisotropic exchange coupling are important perturbations and therefore should be explicitly considered if a complete analysis of the magnetic properties of the borocarbides is desired

    Effect of pressure on the superconducting transition temperature of doped and neutron-damaged MgB2

    Full text link
    Measurements of the superconducting transition temperatures for Al-doped, C-doped and neutron-damaged-annealed MgB2 samples under pressure up to ~8 kbar are presented. The dT_c/dP values change systematically with the decrease of the ambient pressure T_c in a regular fashion. The evolution of the pressure derivatives can be understood assuming that the change in phonon spectrum is a dominant contribution to dT_c/dP

    Carbon doping of superconducting magnesium diboride

    Full text link
    We present details of synthesis optimization and physical properties of nearly single phase carbon doped MgB2 with a nominal stoichiometry of Mg(B{0.8}C{0.2})2 synthesized from magnesium and boron carbide (B4C) as starting materials. The superconducting transition temperature is ~ 22 K (~ 17 K lower than in pure MgB2). The temperature dependence of the upper critical field is steeper than in pure MgB2 with Hc2(10K) ~ 9 T. Temperature dependent specific heat data taken in different applied magnetic fields suggest that the two-gap nature of superconductivity is still preserved for carbon doped MgB2 even with such a heavily suppressed transition temperature. In addition, the anisotropy ratio of the upper critical field for T/Tc ~ 2/3 is gamma ~ 2. This value is distinct from 1 (isotropic) and also distinct from 6 (the value found for pure MgB2).Comment: 11 pages, 13 figures, submitted to Physica

    Effects of Boron Purity, Mg Stoichiometry and Carbon Substitution on Properties of Polycrystalline MgB2_{2}

    Full text link
    By synthesizing MgB2_{2} using boron of different nominal purity we found values of the residual resistivity ratio (RRR=R(300K)/R(42K)RRR = R(300 K) / R(42 K)) from 4 to 20, which covers almost all values found in literature. To obtain high values of RRRRRR, high purity reagents are necessary. With the isotopically pure boron we obtained the highest RRRRRR \sim 20 for the stoichiometric compound. We also investigated Mgx_{x}11^{11}B2_{2} samples with 0.8 <x<< x < 1.2. For the range Mg0.8_{0.8}11^{11}B2_{2} up to Mg1.2_{1.2}11^{11}B2_{2} we found average values of RRRRRR between 14 and 24. For smaller variations in stoichiometry (x=1±0.1x=1\pm 0.1) RRR=18±3RRR = 18 \pm 3. All of our data point to the conclusion that high RRRRRR (20\sim 20) and low ρ0\rho_{0} (0.4μΩcm\leq 0.4 \mu \Omega cm) are intrinsic material properties associated with high purity MgB2_{2}. In addition we have performed initial work on optimizing the formation of carbon doped MgB2_{2} via the use of B4_{4}C. Nearly single phase material can be formed by reaction of nominal Mg(B0.8_{0.8}C0.2_{0.2})2_{2} for 24 hours at 1200C1200^{\circ}C. The TcT_{c} for this composition is between 21.9K21.9 K and 22.7K22.7 K (depending on criterion).Comment: accepted to Physica C, special MgB2 issu

    Anisotropic magnetization, specific heat and resistivity of RFe2Ge2 single crystals

    Get PDF
    We have grown RFe2Ge2 single crystals for R = Y and ten members of the lanthanide series (Pr, Nd, Sm, Gd-Tm, Lu) using Sn flux as the solvent. The method yields clean, high quality crystal plates as evidenced by residual resistivities and RRR values in the range of 3-12 uOhm cm and 20-90 respectively. The crystals are also virtually free of magnetic impurities or secondary phases, allowing the study of the intrinsic anisotropic magnetic behavior of each compound. Characterization was made with X-Ray diffraction, and temperature and field dependent magnetization, specific heat and resistivity. Very strong anisotropies arising mostly from CEF effects were observed for all magnetic rare earths except Gd. Antiferromagnetic ordering occurred at temperatures between 16.5 K (Nd) and 1.1 K (Ho) that roughly scale with the de Gennes factor for the heavy rare earths. For some members there is also a lower temperature transition associated with changes in the magnetic structure. Tm did not order down to 0.4 K, and appears to be a van Vleck paramagnet. All members which ordered above 2 K showed a metamagnetic transition at 2 K for fields below 70 kOe. The calculated effective moments per rare earth atom are close to the expected free ion values of R^3+ except for Sm which displays anomalous behavior in the paramagnetic state. The non-magnetic members of this series (Y, Lu) are characterized by an unusually large electronic specific heat coefficient (gamma ~ 60 mJ/mol K^2) and temperature-independent susceptibility term (chi_0 ~ 0.003 emu/mol), indicative of a relatively large density of states at the Fermi surface.Comment: 34 pages, 13 figures, 1 table, submitted to J. Magn. Magn. Mate
    corecore