627 research outputs found

    Photon molecules in atomic gases trapped near photonic crystal waveguides

    Full text link
    Realizing systems that support robust, controlled interactions between individual photons is an exciting frontier of nonlinear optics. To this end, one approach that has emerged recently is to leverage atomic interactions to create strong and spatially non-local interactions between photons. In particular, effective interactions have been successfully created via interactions between atoms excited to Rydberg levels. Here, we investigate an alternative approach, in which atomic interactions arise via their common coupling to photonic crystal waveguides. This technique takes advantage of the ability to separately tailor the strength and range of interactions via the dispersion engineering of the structure itself, which can lead to qualitatively new types of phenomena. As an example, we discuss the formation of correlated transparency windows, in which photonic states of a certain number and shape selectively propagate through the system. Through this technique, we show in particular that one can create molecular-like potentials that lead to molecular bound states of photon pairs

    Entanglement Storage Units

    Full text link
    We introduce a protocol based on optimal control to drive many body quantum systems into long-lived entangled states, protected from decoherence by big energy gaps, without requiring any apriori knowledge of the system. With this approach it is possible to implement scalable entanglement-storage units. We test the protocol in the Lipkin-Meshkov-Glick model, a prototype many-body quantum system that describes different experimental setups, and in the ordered Ising chain, a model representing a possible implementation of a quantum bus

    Adiabatic quantum dynamics of the Lipkin-Meshkov-Glick model

    Full text link
    The adiabatic quantum evolution of the Lipkin-Meshkov-Glick (LMG) model across its quantum critical point is studied. The dynamics is realized by linearly switching the transverse field from an initial large value towards zero and considering different transition rates. We concentrate our attention on the residual energy after the quench in order to estimate the level of diabaticity of the evolution. We discuss a Landau-Zener approximation of the finite size LMG model, that is successful in reproducing the behavior of the residual energy as function of the transition rate in the most part of the regimes considered. We also support our description through the analysis of the entanglement entropy of the evolved state. The system proposed is a paradigm of infinite-range interaction or high-dimensional models.Comment: 8 pages, 7 figures. (v2) minor revisions, published versio

    Quantum Speed Limit and Optimal Control of Many-Boson Dynamics

    Full text link
    We extend the concept of quantum speed limit -- the minimal time needed to perform a driven evolution -- to complex interacting many-body systems. We investigate a prototypical many-body system, a bosonic Josephson junction, at increasing levels of complexity: (a) within the two-mode approximation {corresponding to} a nonlinear two-level system, (b) at the mean-field level by solving the nonlinear Gross-Pitaevskii equation in a double well potential, and (c) at an exact many-body level by solving the time-dependent many-body Schr\"odinger equation. We propose a control protocol to transfer atoms from the ground state of a well to the ground state of the neighbouring well. Furthermore, we show that the detrimental effects of the inter-particle repulsion can be eliminated by means of a compensating control pulse, yielding, quite surprisingly, an enhancement of the transfer speed because of the particle interaction -- in contrast to the self-trapping scenario. Finally, we perform numerical optimisations of both the nonlinear and the (exact) many-body quantum dynamics in order to further enhance the transfer efficiency close to the quantum speed limit.Comment: 5 pages, 3 figures, and supplemental material (4 pages 1 figure

    Quantum dynamics of propagating photons with strong interactions: a generalized input-output formalism

    Get PDF
    There has been rapid development of systems that yield strong interactions between freely propagating photons in one dimension via controlled coupling to quantum emitters. This raises interesting possibilities such as quantum information processing with photons or quantum many-body states of light, but treating such systems generally remains a difficult task theoretically. Here, we describe a novel technique in which the dynamics and correlations of a few photons can be exactly calculated, based upon knowledge of the initial photonic state and the solution of the reduced effective dynamics of the quantum emitters alone. We show that this generalized "input-output" formalism allows for a straightforward numerical implementation regardless of system details, such as emitter positions, external driving, and level structure. As a specific example, we apply our technique to show how atomic systems with infinite-range interactions and under conditions of electromagnetically induced transparency enable the selective transmission of correlated multi-photon states

    Speeding up critical system dynamics through optimized evolution

    Full text link
    The number of defects which are generated on crossing a quantum phase transition can be minimized by choosing properly designed time-dependent pulses. In this work we determine what are the ultimate limits of this optimization. We discuss under which conditions the production of defects across the phase transition is vanishing small. Furthermore we show that the minimum time required to enter this regime is T∌π/ΔT\sim \pi/\Delta, where Δ\Delta is the minimum spectral gap, unveiling an intimate connection between an optimized unitary dynamics and the intrinsic measure of the Hilbert space for pure states. Surprisingly, the dynamics is non-adiabatic, this result can be understood by assuming a simple two-level dynamics for the many-body system. Finally we classify the possible dynamical regimes in terms of the action s=TΔs=T\Delta.Comment: 6 pages, 6 figure

    Chopped random-basis quantum optimization

    Get PDF
    In this work we describe in detail the "Chopped RAndom Basis" (CRAB) optimal control technique recently introduced to optimize t-DMRG simulations [arXiv:1003.3750]. Here we study the efficiency of this control technique in optimizing different quantum processes and we show that in the considered cases we obtain results equivalent to those obtained via different optimal control methods while using less resources. We propose the CRAB optimization as a general and versatile optimal control technique.Comment: 9 pages, 10 figure

    Noise-resistant optimal spin squeezing via quantum control

    Full text link
    Entangled atomic states, such as spin squeezed states, represent a promising resource for a new generation of quantum sensors and atomic clocks. We demonstrate that optimal control techniques can be used to substantially enhance the degree of spin squeezing in strongly interacting many-body systems, even in the presence of noise and imperfections. Specifically, we present a protocol that is robust to noise which outperforms conventional methods. Potential experimental implementations are discussed.Comment: 5 pages of main tex
    • 

    corecore