183 research outputs found

    Long and Short GRB

    Get PDF
    We report evidence from the 3B Catalogue that short (T_90 < 10 s) and long (T_90 > 10 s) GRB represent different populations and processes: Their spectral behavior is qualitatively different, with short bursts harder in the BATSE range, but chiefly long bursts detected at higher photon energies; \langle V/V_max \rangle = 0.385 \pm 0.019 for short GRB but \langle V/V_max \rangle = 0.282 \pm 0.014 for long GRB, differing by 0.103 \pm 0.024. Long GRB may be the consequence of accretion-induced collapse, but this mechanism fails for short GRB, for which we suggest colliding neutron stars.Comment: 5 pp., latex, no figures, revised to work around bug in latex compile

    The Long and the Short of Gamma-Ray Bursts

    Get PDF
    We report evidence from the 3B Catalogue that long (T90>10T_{90} > 10 s) and short (T90<10T_{90} < 10 s) gamma-ray bursts represent distinct source populations. Their spatial distributions are significantly different, with long bursts having ⟹V/Vmax⟩=0.282±0.014\langle V/V_{max} \rangle = 0.282 \pm 0.014 but short bursts having ⟹V/Vmax⟩=0.385±0.019\langle V/V_{max} \rangle = 0.385 \pm 0.019, differing by 0.103±0.0240.103 \pm 0.024, significant at the 4.3σ4.3 \sigma level. Long and short bursts also differ qualitatively in their spectral behavior, with short bursts harder in the BATSE (50--300 KeV) band, but long bursts more likely to be detected at photon energies > 1 MeV. This implies different spatial origin and physical processes for long and short bursts. Long bursts may be explained by accretion-induced collapse. Short bursts require another mechanism, for which we suggest neutron star collisions. These are capable of producing neutrino bursts as short as a few ms, consistent with the shortest observed time scales in GRB. We briefly investigate the parameters of clusters in which neutron star collisons may occur, and discuss the nuclear evolution of expelled and accelerated matter.Comment: 21 pp., AAS latex, 1 figure added as ps fil

    Calculation of Elastic Green's Functions for Lattices with Cavities

    Full text link
    In this Brief Report, we present an algorithm for calculating the elastic Lattice Greens Function of a regular lattice, in which defects are created by removing lattice points. The method is computationally efficient, since the required matrix operations are on matrices that scale with the size of the defect subspace, and not with the size of the full lattice. This method allows the treatment of force fields with multi-atom interactions.Comment: 3 pages. RevTeX, using epsfig.sty. One figur

    Effects of crack tip geometry on dislocation emission and cleavage: A possible path to enhanced ductility

    Full text link
    We present a systematic study of the effect of crack blunting on subsequent crack propagation and dislocation emission. We show that the stress intensity factor required to propagate the crack is increased as the crack is blunted by up to thirteen atomic layers, but only by a relatively modest amount for a crack with a sharp 60∘^\circ corner. The effect of the blunting is far less than would be expected from a smoothly blunted crack; the sharp corners preserve the stress concentration, reducing the effect of the blunting. However, for some material parameters blunting changes the preferred deformation mode from brittle cleavage to dislocation emission. In such materials, the absorption of preexisting dislocations by the crack tip can cause the crack tip to be locally arrested, causing a significant increase in the microscopic toughness of the crack tip. Continuum plasticity models have shown that even a moderate increase in the microscopic toughness can lead to an increase in the macroscopic fracture toughness of the material by several orders of magnitude. We thus propose an atomic-scale mechanism at the crack tip, that ultimately may lead to a high fracture toughness in some materials where a sharp crack would seem to be able to propagate in a brittle manner. Results for blunt cracks loaded in mode II are also presented.Comment: 12 pages, REVTeX using epsfig.sty. 13 PostScript figures. Final version to appear in Phys. Rev. B. Main changes: Discussion slightly shortened, one figure remove

    The possible explanation of electric-field-doped C60 phenomenology in the framework of Eliashberg theory

    Full text link
    In a recent paper (J.H. Schon, Ch. Kloc, R.C. Haddon and B. Batlogg, Nature 408 (2000) 549) a large increase in the superconducting critical temperature was observed in C60 doped with holes by application of a high electric field. We demonstrate that the measured Tc versus doping curves can be explained by solving the (four) s-wave Eliashberg equations in the case of a finite, non-half-filled energy band. In order to reproduce the experimental data, we assume a Coulomb pseudopotential depending on the filling in a very simple and plausible way. Reasonable values of the physical parameters involved are obtained. The application of the same approach to new experimental data (J.H. Schon, Ch. Kloc and B. Batlogg, Science 293 (2001) 2432) on electric field-doped, lattice-expanded C60 single crystals (Tc=117 K in the hole-doped case) gives equally good results and sets a theoretical limit to the linear increase of Tc at the increase of the lattice spacing.Comment: latex2e, 6 pages, 7 figures, 1 table, revised versio

    Structure and regulation of the Asr gene family in banana

    Get PDF
    Abscisic acid, stress, ripening proteins (ASR) are a family of plant-specific small hydrophilic proteins. Studies in various plant species have highlighted their role in increased resistance to abiotic stress, including drought, but their specific function remains unknown. As a first step toward their potential use in crop improvement, we investigated the structure and regulation of the Asr gene family in Musa species (bananas and plantains). We determined that the MusaAsr gene family contained at least four members, all of which exhibited the typical two exons, one intron structure of Asr genes and the “ABA/WDS” (abscisic acid/water deficit stress) domain characteristic of Asr genes. Phylogenetic analyses determined that the MusaAsr genes were closely related to each other, probably as the product of recent duplication events. For two of the four members, two versions corresponding to the two sub-genomes of Musa, acuminata and balbisiana were identified. Gene expression and protein analyses were performed and Asr expression could be detected in meristem cultures, root, pseudostem, leaf and cormus. In meristem cultures, mAsr1 and mAsr3 were induced by osmotic stress and wounding, while mAsr3 and mAsr4 were induced by exposure to ABA. mASR3 exhibited the most variation both in terms of amino acid sequence and expression pattern, making it the most promising candidate for further functional study and use in crop improvement
    • 

    corecore