17 research outputs found

    Tau Protein as a Biological Fluid Biomarker in Neurodegenerative Dementias

    Get PDF
    Tau is a microtubule-associated protein, whose main function is the modulation of the stability of axonal microtubules. In physiological conditions tau is abundant in neurons while its expression in glial populations is low and restricted to astrocytes and oligodendrocytes. The aggregation of tau in neurofibrillary or gliofibrillary tangles is the main hallmark of tauopathies, a complex group of human neurodegenerative conditions where tau hyper-phosphorylation causes its increased insolubility and aggregation leading to tangle formation and microtubule destabilization. Tau can be detected in biological fluids in physiological and pathological conditions. In several neurodegenerative dementias, either associated or not to a primary tauopathy, tau levels are altered in a disease-specific pattern, which can be used as a biomarker for disease diagnosis and prognosis. The study of tau levels in biological fluids has been mainly performed in the cerebrospinal fluid (CSF), although the recent development of ultrasensitive techniques allows the robust quantification of tau in blood-based biofluids such as serum and plasma. The presence of elevated total-tau in the CSF is assumed to reflect the degree of axonal damage in the brain tissue. Consequently, highest total-tau CSF levels are found in sporadic Creutzfeldt-Jakob disease, which is characterized by massive neuronal damage and a rapid progressive course. Elevated total-tau is also detected in Alzheimer’s disease and dementia with Lewy bodies, while in other dementia conditions such as vascular dementia, frontotemporal dementia and corticobasal degeneration are unchanged, inconclusive or not determined. Additionally, total-tau rises temporarily due to cerebral infarction. In contrast, elevated phospho-tau levels seem to be restricted to Alzheimer’s disease pathology, most likely mirroring the presence of the hyper-phosphorylated form in the brain tissue, although phospho-tau levels are mainly unaffected in tauopathies. Additionally, isoforms and different structural and truncated tau forms have also been reported to be altered in neurodegenerative dementias. In this complex scenario the diagnostic accuracy of diverse tau forms as disease-specific biomarkers needs to be established. In this chapter, we summarize the current knowledge on the alterations of diverse tau forms in biological fluids of neurodegenerative dementias and its relevance in the differential diagnostic context. Additionally, we explore how tau alterations in the brain tissue may explain the etiology of its regulated levels in CSF and blood

    Differences in CSF Biomarkers Profile of Patients with Parkinson's Disease Treated with MAO-B Inhibitors in Add-On

    Get PDF
    Monoamine oxidase type B inhibitors (iMAO-Bs) are a class of largely-used antiparkinsonian agents that, based on experimental evidence, are supposed to exert different degrees of neuroprotection in Parkinson's disease (PD). However, clinical proofs on this regard are very scarce. Since cerebrospinal fluid (CSF) reflects pathological changes occurring at brain level, we examined the neurodegeneration-related CSF biomarkers profile of PD patients under chronic treatment with different iMAO-Bs to identify biochemical signatures suggestive for differential neurobiological effects.Thirty-five PD patients under chronic treatment with different iMAO-Bs in add-on to levodopa were enrolled and grouped in rasagiline (n = 13), selegiline (n = 9), safinamide (n = 13). Respective standard clinical scores for motor and non-motor disturbances, together with CSF biomarkers of neurodegeneration levels (amyloid- β -42, amyloid- β -40, total and 181-phosphorylated tau, and lactate) were collected and compared among the three iMAO-B groups.No significant clinical differences emerged among the iMAO-B groups. CSF levels of tau proteins and lactate were instead different, resulting higher in patients under selegiline than in those under rasagiline and safinamide.Although preliminary and limited, this study indicates that patients under different iMAO-Bs may present distinct profiles of CSF neurodegeneration-related biomarkers, probably because of the differential neurobiological effects of the drugs. Larger studies are now needed to confirm and extend these initial observations

    Mechanistic Insights of Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis: An Update on a Lasting Relationship

    No full text
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of the upper and lower motor neurons. Despite the increasing effort in understanding the etiopathology of ALS, it still remains an obscure disease, and no therapies are currently available to halt its progression. Following the discovery of the first gene associated with familial forms of ALS, Cu–Zn superoxide dismutase, it appeared evident that mitochondria were key elements in the onset of the pathology. However, as more and more ALS-related genes were discovered, the attention shifted from mitochondria impairment to other biological functions such as protein aggregation and RNA metabolism. In recent years, mitochondria have again earned central, mechanistic roles in the pathology, due to accumulating evidence of their derangement in ALS animal models and patients, often resulting in the dysregulation of the energetic metabolism. In this review, we first provide an update of the last lustrum on the molecular mechanisms by which the most well-known ALS-related proteins affect mitochondrial functions and cellular bioenergetics. Next, we focus on evidence gathered from human specimens and advance the concept of a cellular-specific mitochondrial “metabolic threshold”, which may appear pivotal in ALS pathogenesis

    Protein Aggregation Landscape in Neurodegenerative Diseases: Clinical Relevance and Future Applications

    No full text
    Intrinsic disorder is a natural feature of polypeptide chains, resulting in the lack of a defined three-dimensional structure. Conformational changes in intrinsically disordered regions of a protein lead to unstable β-sheet enriched intermediates, which are stabilized by intermolecular interactions with other β-sheet enriched molecules, producing stable proteinaceous aggregates. Upon misfolding, several pathways may be undertaken depending on the composition of the amino acidic string and the surrounding environment, leading to different structures. Accumulating evidence is suggesting that the conformational state of a protein may initiate signalling pathways involved both in pathology and physiology. In this review, we will summarize the heterogeneity of structures that are produced from intrinsically disordered protein domains and highlight the routes that lead to the formation of physiological liquid droplets as well as pathogenic aggregates. The most common proteins found in aggregates in neurodegenerative diseases and their structural variability will be addressed. We will further evaluate the clinical relevance and future applications of the study of the structural heterogeneity of protein aggregates, which may aid the understanding of the phenotypic diversity observed in neurodegenerative disorders

    Morphine withdrawal modifies PrP expression in rat hippocampus

    No full text
    Aims. Prion protein (PrPC), like many GPI-anchored protein, is found in sphingolipid-rich membrane microdomains known as lipid raft. This membrane-bound isoform dimerizes and can act as cell surface receptor, co-receptor or form multimolecular complexes and recruit downstream signal transduction pathways. As known, dimerization of membrane-bound PrPC leads to clustering in multimolecular complexes and serves to regulate different aspect of neuronal homeostasis, while intracellular dimerization appears to be the most relevant event in neuroprotection, via N1 and C1 prion metabolites. Repeated exposure to opioids may alter the brain so that it functions normally when the drugs are present, thus, a prolonged withdrawal might lead to homeostatic changes headed for restoration of physiological state. During morphine withdrawal, stress responses might be responsible, at least in part, for long-term changes of hippocampal plasticity and affect metaplasticity. We hypothesize that stressful stimuli induced by opiate withdrawal, and the subsequent long-term homeostatic changes in hippocampal plasticity, might modulate the expression of PrPC. Methods. Male Sprague–Dawley rats were treated with morphine hydrochloride twice daily for 14 days and divided in seven groups with different withdrawals. Homogenized hippocampi and prefrontal cortices were subjected to western blot analisys with different PrP antibodies. We evaluated the generation of PrPC oligomeric species, such as dimers, which could further aggregate into resistant form of PrP. Results. Although neither acute, nor chronic morphine exposure, influenced PrPC expression in hippocampus or prefrontal cortex, abstinence from opiate induced a time-dependent and region-specific modification in PrPC content. In fact, one week after morphine withdrawal, PrPC expression in the hippocampus, but not in the prefrontal cortex, was significantly increased, and this effect was still present 14 days after last morphine exposure. This PrPC overexpression in hippocampal tissue may be linked to generation of PrPC dimeric structure moreover opiate withdrawal led to α-cleavage at the PrPC hydrophobic domain and consequent PrPN1/C1 fragments production. Conclusions. We speculate that this might be the mechanism by which stressful stimuli induced by opiate withdrawal and the subsequent long-term homeostatic changes in hippocampal plasticity, modulate the expression and the dynamics of PrPC. We show the aggregation of PrPC in a biological process not related to neurodegeneration. Our results may suggest that PrPC dimerization, and its further aggregation in partially resistant oligomers, may play a role in the restoration of network homeostasis associated with withdrawal from morphine

    Morphine withdrawal modifies prion protein expression in rat hippocampus

    No full text
    The hippocampus is a vulnerable brain structure susceptible to damage during aging and chronic stress. Repeated exposure to opioids may alter the brain so that it functions normally when the drugs are present, thus, a prolonged withdrawal might lead to homeostatic changes headed for the restoration of the physiological state. Abuse of morphine may lead to Reacting Oxygen Species-induced neurodegeneration and apoptosis. It has been proposed that during morphine withdrawal, stress responses might be responsible, at least in part, for long-term changes of hippocampal plasticity. Since prion protein is involved in both, Reacting Oxygen Species mediated stress responses and synaptic plasticity, in this work we investigate the effect of opiate withdrawal in rats after morphine treatment. We hypothesize that stressful stimuli induced by opiate withdrawal, and the subsequent long-term homeostatic changes in hippocampal plasticity, might modulate the Prion protein expression. Our results indicate that abstinence from the opiate induced a time-dependent and region-specific modification in Prion protein content, indeed during morphine withdrawal a selective unbalance of hippocampal Prion Protein is observable. Moreover, Prion protein overexpression in hippocampal tissue seems to generate a dimeric structure of Prion protein and á-cleavage at the hydrophobic domain. Stress factors or toxic insults can induce cytosolic dimerization of Prion Protein through the hydrophobic domain, which in turn, it stimulates the á-cleavage and the production of neuroprotective Prion protein fragments. We speculate that this might be the mechanism by which stressful stimuli induced by opiate withdrawal and the subsequent long-term homeostatic changes in hippocampal plasticity, modulate the expression and the dynamics of Prion protein

    Neurofilament light chain and α-synuclein RT-QuIC as differential diagnostic biomarkers in parkinsonisms and related syndromes

    No full text
    Abstract Neurofilament light chain (NfL) and α-synuclein oligomeric seeds (α-syn-s) are promising biomarkers for patients with parkinsonism. We assessed their performance in discriminating Parkinson disease (PD) from atypical parkinsonisms (APDs) and evaluated the association between NfL levels and clinical measures of disease severity. We measured NfL in cerebrospinal fluid (CSF) and/or plasma by immunoassays and α-syn-s in CSF by real-time quaking-induced conversion (RT-QuIC) in patients with PD (n = 153), multiple system atrophy (MSA) (n = 80), progressive supranuclear palsy/cortico-basal syndrome (PSP/CBS) (n = 58), dementia with Lewy bodies (n = 64), isolated REM-sleep behaviour disorder (n = 19), and isolated autonomic failure (n = 30). Measures of disease severity included disease duration, UPDRS-III score, Hoehn and Yahr stage, orthostatic hypotension, MMSE score, and CSF amyloid-beta profile. Both CSF NfL (cNfL) and plasma NfL (pNfL) levels were markedly elevated in APDs, and allowed differentiation with PD (vs. APDs, cNfL AUC 0.96; pNfL AUC 0.95; vs. MSA cNfL AUC 0.99; pNfL AUC 0.97; vs. PSP/CBS cNfL AUC 0.94; pNfL AUC 0.94). RT-QuIC detected α-syn-s in 91.4% of PD, but only 2.5% of APDs (all MSA). In PD/PDD, motor scales significantly correlated with cNfL levels. Although pNfL and both cNfL and α-syn-s accurately distinguished PD from APDs, the combined assessment of CSF markers provided a higher diagnostic value (PD vs. APDs AUC 0.97; vs. MSA AUC 0.97; vs. PSP/CBS AUC 0.99) than RT-QuIC alone (p = 0.047 vs. APDs; p = 0.002 vs MSA; p = 0.007 vs PSP/CBS), or cNfL alone (p = 0.011 vs. APDs; p = 0.751 vs MSA; p = 0.0001 vs. PSP/CBS). The results support the use of these assays in specialised clinics

    Proteinase K sensitivity of PrP<sup>C</sup>.

    No full text
    <p>Hippocampal samples derived from control (saline) and morphine-withdrawal rats (7 and 14 days after last morphine injection) were subjected to digestion with proteinase K (PK) 5 mg/ml. Note the bands at 30 and 26 kDa of undegraded PrP<sup>C</sup>, in comparison to control samples.</p
    corecore