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Abstract

Background: Monoamine oxidase type B inhibitors (iMAO-Bs) are a class of largely-used antiparkinsonian agents that, based on ex-
perimental evidence, are supposed to exert different degrees of neuroprotection in Parkinson’s disease (PD). However, clinical proofs
on this regard are very scarce. Since cerebrospinal fluid (CSF) reflects pathological changes occurring at brain level, we examined the
neurodegeneration-related CSF biomarkers profile of PD patients under chronic treatment with different iMAO-Bs to identify biochemi-
cal signatures suggestive for differential neurobiological effects. Methods: Thirty-five PD patients under chronic treatment with different
iMAO-Bs in add-on to levodopa were enrolled and grouped in rasagiline (n = 13), selegiline (n = 9), safinamide (n = 13). Respective
standard clinical scores for motor and non-motor disturbances, together with CSF biomarkers of neurodegeneration levels (amyloid-5-42,
amyloid-3-40, total and 181-phosphorylated tau, and lactate) were collected and compared among the three iMAO-B groups. Results:
No significant clinical differences emerged among the iMAO-B groups. CSF levels of tau proteins and lactate were instead different, re-
sulting higher in patients under selegiline than in those under rasagiline and safinamide. Conclusions: Although preliminary and limited,
this study indicates that patients under different iMAO-Bs may present distinct profiles of CSF neurodegeneration-related biomarkers,
probably because of the differential neurobiological effects of the drugs. Larger studies are now needed to confirm and extend these
initial observations.
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1. Introduction of in vitro and in vivo experimental evidence. Specifi-
cally, iMAO-Bs may operate neural defence against mi-
tochondrial toxins (MPTP, rotenone and paraquat) [4—
7], monoamine-depleting neurotoxins (N-(2-chloroethyl)-
N-ethyl-2-bromobenzylamine hydrochloride (DSP-4)) [8],
and hypoxic conditions [9,10], and exert antioxidant prop-
erties [4,11-13], antiapoptotic [5,14—16] and neurotrophic
effects [17,18]. Nevertheless, human-based proofs of
iMAO-Bs-associated neuroprotection are very limited and

not completely univocal; moreover, no comparison studies

Parkinson’s disease (PD) is a common neurodegen-
erative disorder responsible for a disabling syndrome, in-
cluding motor and non-motor disturbances. While neu-
ropathology and main pathogenic pathways have been es-
tablished over time, PD still remains an incurable disor-
der. Indeed, effective symptomatic therapies exist, which
mostly replace deficient dopamine, but, to date, no disease-
modifying treatments are available [1].

Monoamine Oxidase type B Inhibitors (iMAO-Bs) are
a class of antiparkinsonian drugs, used in mono or add-
on therapy along the entire disease course, that potenti-
ate dopaminergic transmission at striatal level by reduc-
ing dopamine degradation [2]. The three main iMAO-Bs
are selegiline, rasagiline, and safinamide, which have in-
dividual peculiarities in the spectrum of molecular effects
and in clinical indications [3]. Beside symptomatic re-
lief in motor and non-motor disturbances, iMAO-Bs have
been considered as neuroprotective agents, based on a body

among the single iIMAO-Bs exist.

Cerebrospinal fluid (CSF) reflects pathological
changes of the brain. Accordingly, the CSF measurement
of neurodegeneration-related peptides, such as amyloid-8
fragments and tau proteins, or metabolites, such as lactate,
allows tracking in vivo molecular events underlying
neurodegenerative diseases [19]. In particular, in PD,
CSF amyloid-$-42 may inform on concurrent brain amy-
loidopathy and predict the risk of cognitive decline; tau
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levels and lactate, instead, mostly mirror neuronal loss and
oxidative stress respectively, providing readout of global
brain pathology [20].

Here we thus conducted a study on the CSF biomark-
ers profile of PD patients chronically treated with both L-
dopa and different iMAO-Bs in add-on, aiming to disclose
biochemical signatures suggestive of differential neurobio-
logical effects.

2. Methods

2.1 Study Population and Clinical-Biochemical
Assessement

The study involved a total of 35 PD patients affer-
ent to Neurology Unit of Tor Vergata University Hospital
(Rome, Italy). PD was diagnosed following the 2015 MDS
criteria. All patients were receiving iMAO-Bs add-on ther-
apy for one year at least (n = 13 rasagiline 1 mg/die, n =
9 selegiline 10 mg/die, n = 13 safinamide 100 mg/die); the
remaining dopaminergic therapy was stable for at least 6
months. For each participant, demographics and medical
history were collected, together with MDS-UPDRS pars
111 [21] and Montreal Cognitive Assessment (MoCA) [22]
scores; the levodopa equivalent daily dose (LEDD) was
calculated. They all underwent lumbar puncture (LP) ac-
cording to standard procedures [23]. Briefly, CSF was col-
lected in polypropylene tubes, carried on ice to local labo-
ratory, centrifuged at 2000 rpm for 10 min at 4°, aliquoted
in polypropylene vials (0.5 mL) and stored at —80°, pend-
ing analysis. A routine blood sample was obtained con-
temporary to LP, to allow a comparative chemical analy-
sis of CSF. In addition, CSF sample was excluded if mi-
croscopic observation revealed >5 cells/uL. Chemistry as-
says were performed by using commercially available kits
following the manufacturer’s specifications (Flex reagent
cartridge, Dimension Vista System, Siemens Healthcare
Diagnostics GmbH, Munich, Germany). CSF assay of
amyloid-3-42 (Ap42), amyloid-5-40 (A[40), total and
181-phosphorilated tau (t-tau and p-tau), was performed by
using commercially available sandwich enzyme-linked im-
munosorbent assays, as previously described [19,24]. The
A[42/A 340 ratio was also calculated.

2.2 Statistical Analysis

Variables distribution was preliminarily examined by
Shapiro-Wilk test. Clinical-demographic data were com-
pared among the groups by Mann—Whitney U test. Categor-
ical variables were compared by chi-square test. Consid-
ering the small sample size, although normally distributed,
CSF neuorodegenerative biomarkers and lactate levels were
compared among groups by Kruskal-Wallis test. Pairwise
comparisons after Kruskal-Wallis test was also assessed. A
p < 0.05 was considered significant. Analysis was con-
ducted blindly with IBM-SPSS-22 (IBM Corp., Chicago,
IL, USA).

3. Results

No differences resulted in demographics and clinical
parameters among the groups. Regarding CSF biomarkers,
t-tau (p = 0.005), p-tau (p = 0.017) and lactate (p = 0.037)
levels significantly differed among the groups (Table 1).
Pairwise comparisons showed significant differences of t-
tau (selegiline vs. rasagiline, p = 0.027; selegiline vs. sa-
finamide, p = 0.006), p-tau (selegiline vs. safinamide, p
= 0.05; selegiline vs. safinamide, p = 0.021) and lactate
(selegiline vs. safinamide, p = 0.041). Graphical data for
t-tau, p-tau and lactate are represented in Fig. |A—C. CSF
biomarkers did not differ between females and males.
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Fig. 1. T-Tau (Fig. 1A), P-Tau (Fig. 1B) and lactic acid (Fig. 1C)
levels are expressed as mean + SD. Significant differences be-
tween groups * at p < 0.05 and ** at p < 0.01 by pairwise com-

parisons.

4. Discussion

This pilot study examined the profile of
neurodegeneration-related CSF biomarkers of three
clinically-homogenous PD groups treated with different
iIMAO-Bs (namely, selegiline, rasagiline and safinamide)
in add-on, looking for biochemical signatures suggestive
for differential neurobiological effects. The higher levels
of t-tau, p-tau, and lactate measured in patients under
selegiline, compared to those under rasagiline and safi-
namide, indicate distinct molecular or neuropathological
substrates associated with different iMAO-Bs.

Tau proteins in CSF are basically considered as marker
of neuronal damage, and tauopathy overall. While the CSF
levels proportionally reflect neurofibrillary tangles deposi-
tion in Alzheimer’s disease (AD) [25], the neuropatholog-
ical correlate in PD is not completely clear yet. Molec-
ular interactions between tau and a-synuclein have been
reported in Lewy body pathology characterizing PD and
other synucleinopathies [26]; however, higher CSF levels
of tau proteins in PD have been associated with major brain
networks disruption [27,28], age-related or environmental-
related neuropathological changes [20,29,30], and, in gen-
eral, with greater clinical severity and poorer outcome, ei-
ther in motor or cognitive aspects [31-33]. Accordingly, we

&% IMR Press


https://www.imrpress.com

Table 1. Demographic, clinical and biochemical variables of the study population. Unit of measure are expressed by the

following abbrevations pmol/mL (picomoles/milliliter) and mmol/mL (millimoles/milliliter).

Variable Selegiline Rasagiline Safinamide Significants
n=9 n=13 n=13

(f: 55.6%; m: 44.4%) (f: 30.8%; m: 69.2%) (f: 69.2%; m: 30.8%) ns
Clinical variable Mean S.D. Mean S.D. Mean S.D.
Age (y) 54.7 7.6 52.1 13.1 54.3 9.3 ns
Duration (y) 3.9 2.5 6.1 1.4 6.9 1.0 ns
MOCA 26.0 1.2 27.5 1.3 242 2.0 ns
UPDRS III 25.7 11.2 26.7 6.6 352 6.1 ns
LEDD 543.9 152.1 567.5 139.6 718.8.3 74.1 ns
CSF biomarker
t-tau (pmol/mL) 264.5 112.3 146.2 82.3 122.8 36.1 p=0.005
p-tau (pmol/mL) 40.1 13.6 254 11.5 24.4 12.3 p=0.017
AB42 (pmol/mL) 775.0 249.7 837.2 316.5 9123 264.8 Ns
AB40 (pmol/mL) 7553.3 1663.7 5239.7 1043.7 5401.0 1737.3 Ns
AB42/AB40 0.131 0.063 0.167 0.057 0.172 0.025 Ns
Lactate (mmol/mL) 1.74 0.38 1.41 0.33 1.35 0.21 p=0.037

could accept the higher CSF tau proteins levels, the wider
neurodegeneration, even in PD. CSF lactate, instead, could
be considered a readout of brain mitochondrial activity and
redox balance, whose levels increase in parallel with oxida-
tive stress and metabolic impairment [19].

The clinical homogeneity of our study population al-
lows us to refer, at least in part, differences in CSF biomark-
ers profile of the three iMAO-Bs groups (in particular,
the higher levels of tau proteins and lactate in selegi-
line group compared to rasagiline and safinamide groups)
to the distinct action mechanisms and metabolism of the
drugs. Indeed, selegiline is metabolized to 1-amphetamine
and to 1-methamphetamine [34], having amphetamine-like
properties [35], whereas rasagiline is metabolized to 1-
aminoindan, not displaying amphetamine-like effects [36].
It is well known that amphetamine may be neurotoxic
[37]. Conversely, experimental data from cellular models
disclose neuroprotective effects of 1-aminoindan [38,39].
Moreover, selegiline and rasagiline differently modulate
synaptic activity at corticostriatal level [2], which is consis-
tent with distinct pathways of molecular activation in neu-
rons that, in turn, may translate in long-term differences
in proteinopathy and degeneration shaping. Safinamide,
instead, has a prominent antiglutamatergic effect, either
by antagonizing NMDA-mediated signalling or by block-
ing voltage-dependent sodium and N-type calcium chan-
nels [40—42]. The inhibition of glutamate transmission, the
subsequent attenuation of associated excitotoxicity, and the
containment of oxidative stress [43], might thus account for
the milder profile of neurodegeneration observed in patients
taking safinamide, compared to those taking selegiline.

We only observed differences in tau proteins, but not
in amyloid-/3 peptides. Increasing body of evidence, even
from humans, is indicating substantial interactions between
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iMAO-Bs and tau protein pathway [44,45], which may
account for this preferential effects. Conversely, regard-
ing amyloid- pathway, recent studies demonstrated the
involvement of MAO-B into the amyloidogenic cascade
[46,47]; however, they mostly relied on AD models and did
not find confirmation in our cohort of PD patients.

5. Conclusions

This study is limited by the sample size, the retro-
spective design, the relative exiguity of the biomarkers
panel, and the absence of a control group without iMAO-
Bs (which indeed could have presented with substantial
differences in clinical severity or disease duration). De-
spite limitations, we provided preliminary evidence on the
distinct biochemical endophenotype of PD patients under
various iIMAO-Bs. With the due caution, we could refer
differences in CSF neurodegeneration-related biomarkers
to respective pharmacodynamic peculiarities of selegiline,
rasagiline, and safinamide. In particular, the lower levels of
tau proteins and lactate may indicate a differential effect on
neurodegenerative cascade operated by rasagiline and safi-
namide that, differently from selegiline, do not display an
amphetamine-like behaviour. This preliminary work also
highlighted the need for prospective comparative trials to
examine neuroprotection activity associated with different
iMAO-Bs, which should include CSF biomarkers of neu-
rodegeneration among the outcomes, as more recent studies
do [48,49].
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