19 research outputs found

    A secreted fluorescent reporter targeted to pituitary growth hormone cells in transgenic mice.

    No full text
    In stable transfection experiments in the GH-producing GC cell line, a construct containing the entire signal peptide and the first 22 residues of human GH linked in frame with enhanced green fluorescent protein (eGFP), produced brightly fluorescent cells with a granular distribution of eGFP. This eGFP reporter was then inserted into a 40-kb cosmid transgene containing the locus control region for the hGH gene and used to generate transgenic mice. Anterior pituitaries from these GH-eGFP transgenic mice showed numerous clusters of strongly fluorescent cells, which were also immunopositive for GH, and which could be isolated and enriched by fluorescence-activated cell sorting. Confocal scanning microscopy of pituitary GH cells from GH-eGFP transgenic mice showed a markedly granular appearance of fluorescence. Immunogold electron microscopy and RIA confirmed that the eGFP product was packaged in the dense cored secretory vesicles of somatotrophs and was secreted in parallel with GH in response to stimulation by GRF. Using eGFP fluorescence, it was possible to identify clusters of GH cells in acute pituitary slices and to observe spontaneous transient rises in their intracellular Ca2+ concentrations after loading with Ca2+ sensitive dyes. This transgenic approach opens the way to direct visualization of spontaneous and secretagogue-induced secretory mechanisms in identified GH cells

    FOXO3a and the MAPK p38 are activated by cetuximab to induce cell death and inhibit cell proliferation and their expression predicts cetuximab efficacy in colorectal cancer

    Get PDF
    International audienceBACKGROUND:Cetuximab, a monoclonal antibody against EGFR used for the treatment of colorectal cancer (CRC), is ineffective in many patients. The aim of this study was to identify the signalling pathways activated by cetuximab in CRC cells and define new biomarker of response.METHODS:We used in vitro, in vivo models and clinical CRC samples to assess the role of p38 and FOXO3a in cetuximab mechanism of action.RESULTS:We show that cetuximab activates the MAPK p38. Specifically, p38 inhibition reduced cetuximab efficacy on cell growth and cell death. At the molecular level, cetuximab activates the transcription factor FOXO3a and promotes its nuclear translocation via p38-mediated phosphorylation, leading to the upregulation of its target genes p27 and BIM and the subsequent induction of apoptosis and inhibition of cell proliferation. Finally, we found that high FOXO3a and p38 expression levels are associated with better response rate and improved outcome in cetuximab-treated patients with CRC harbouring WT KRAS.CONCLUSIONS:We identify FOXO3a as a key mediator of cetuximab mechanism of action in CRC cells and define p38 as its activator in this context. Moreover, high FOXO3a and p38 expression could predict the response to cetuximab in patients with CRC harbouring WT KRAS
    corecore