71 research outputs found

    p53 mutations in classic and pleomorphic invasive lobular carcinoma of the breast

    Get PDF
    Contains fulltext : 110338.pdf (publisher's version ) (Open Access)BACKGROUND: p53 is a tumor suppressor that is frequently mutated in human cancers. Although alterations in p53 are common in breast cancer, few studies have specifically investigated TP53 mutations in the breast cancer subtype invasive lobular carcinoma (ILC). Recently reported conditional mouse models have indicated that functional p53 inactivation may play a role in ILC development and progression. Since reports on the detection of TP53 mutations in the relatively favorable classic and more aggressive pleomorphic variants of ILC (PILC) are rare and ambiguous, we performed a comprehensive analysis to determine the mutation status of TP53 in these breast cancer subtypes. METHODS: To increase our understanding of p53-mediated pathways and the roles they may play in the etiology of classic ILC and PILC, we investigated TP53 mutations and p53 accumulation in a cohort of 22 cases of classic and 19 cases of PILC by direct DNA sequencing and immunohistochemistry. RESULTS: We observed 11 potentially pathogenic TP53 mutations, of which three were detected in classic ILC (13.6%) and 8 in PILC (42.1%; p = 0.04). While p53 protein accumulation was not significantly different between classic and pleomorphic ILC, mutations that affected structure and protein function were significantly associated with p53 protein levels. CONCLUSION: TP53 mutations occur more frequently in PILC than classic ILC.1 april 201

    Designing Focused Chemical Libraries Enriched in Protein-Protein Interaction Inhibitors using Machine-Learning Methods

    Get PDF
    Protein-protein interactions (PPIs) may represent one of the next major classes of therapeutic targets. So far, only a minute fraction of the estimated 650,000 PPIs that comprise the human interactome are known with a tiny number of complexes being drugged. Such intricate biological systems cannot be cost-efficiently tackled using conventional high-throughput screening methods. Rather, time has come for designing new strategies that will maximize the chance for hit identification through a rationalization of the PPI inhibitor chemical space and the design of PPI-focused compound libraries (global or target-specific). Here, we train machine-learning-based models, mainly decision trees, using a dataset of known PPI inhibitors and of regular drugs in order to determine a global physico-chemical profile for putative PPI inhibitors. This statistical analysis unravels two important molecular descriptors for PPI inhibitors characterizing specific molecular shapes and the presence of a privileged number of aromatic bonds. The best model has been transposed into a computer program, PPI-HitProfiler, that can output from any drug-like compound collection a focused chemical library enriched in putative PPI inhibitors. Our PPI inhibitor profiler is challenged on the experimental screening results of 11 different PPIs among which the p53/MDM2 interaction screened within our own CDithem platform, that in addition to the validation of our concept led to the identification of 4 novel p53/MDM2 inhibitors. Collectively, our tool shows a robust behavior on the 11 experimental datasets by correctly profiling 70% of the experimentally identified hits while removing 52% of the inactive compounds from the initial compound collections. We strongly believe that this new tool can be used as a global PPI inhibitor profiler prior to screening assays to reduce the size of the compound collections to be experimentally screened while keeping most of the true PPI inhibitors. PPI-HitProfiler is freely available on request from our CDithem platform website, www.CDithem.com

    The TP53 Arg72Pro and MDM2 309G>T polymorphisms are not associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Background: The TP53 pathway, in which TP53 and its negative regulator MDM2 are the central elements, has an important role in carcinogenesis, particularly in BRCA1- and BRCA2-mediated carcinogenesis. A single nucleotide polymorphism (SNP) in the promoter region of MDM2 (309T>G, rs2279744) and a coding SNP of TP53 (Arg72Pro, rs1042522) have been shown to be of functional significance. Methods: To investigate whether these SNPs modify breast cancer risk for BRCA1 and BRCA2 mutation carriers, we pooled genotype data on the TP53 Arg72Pro SNP in 7011 mutation carriers and on the MDM2 309T>G SNP in 2222 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Data were analysed using a Cox proportional hazards model within a retrospective likelihood framework. Results: No association was found between these SNPs and breast cancer risk for BRCA1 (TP53: per-allele hazard ratio (HR)=1.01, 95% confidence interval (CI): 0.93–1.10, Ptrend=0.77; MDM2: HR=0.96, 95%CI: 0.84–1.09, Ptrend=0.54) or for BRCA2 mutation carriers (TP53: HR=0.99, 95%CI: 0.87–1.12, Ptrend=0.83; MDM2: HR=0.98, 95%CI: 0.80–1.21, Ptrend=0.88). We also evaluated the potential combined effects of both SNPs on breast cancer risk, however, none of their combined genotypes showed any evidence of association. Conclusion: There was no evidence that TP53 Arg72Pro or MDM2 309T>G, either singly or in combination, influence breast cancer risk in BRCA1 or BRCA2 mutation carriers. O M Sinilnikova1,2, A C Antoniou3, J Simard4, S Healey5, M Léoné1, D Sinnett6,7, A B Spurdle5, J Beesley5, X Chen5, kConFab8, M H Greene9, J T Loud9, F Lejbkowicz10, G Rennert10, S Dishon10, I L Andrulis11,12, OCGN11, S M Domchek13, K L Nathanson13, S Manoukian14, P Radice15,16, I Konstantopoulou17, I Blanco18, A L Laborde19, M Durán20, A Osorio21, J Benitez21, U Hamann22, F B L Hogervorst23, T A M van Os24, H J P Gille25, HEBON23, S Peock3, M Cook3, C Luccarini26, D G Evans27, F Lalloo27, R Eeles28, G Pichert29, R Davidson30, T Cole31, J Cook32, J Paterson33, C Brewer34, EMBRACE3, D J Hughes35, I Coupier36,37, S Giraud1, F Coulet38, C Colas38, F Soubrier38, E Rouleau39, I Bièche39, R Lidereau39, L Demange40, C Nogues40, H T Lynch41, GEMO1,2,42, R K Schmutzler43, B Versmold43, C Engel44, A Meindl45, N Arnold46, C Sutter47, H Deissler48, D Schaefer49, U G Froster50, GC-HBOC43,44,45,46,47,48,49,50, K Aittomäki51, H Nevanlinna52, L McGuffog3, D F Easton3, G Chenevix-Trench5 and D Stoppa-Lyonnet42 on behalf of the Consortium of Investigators of Modifiers of BRCA1/

    Long non-coding RNAs and cancer: a new frontier of translational research?

    Get PDF
    Author manuscriptTiling array and novel sequencing technologies have made available the transcription profile of the entire human genome. However, the extent of transcription and the function of genetic elements that occur outside of protein-coding genes, particularly those involved in disease, are still a matter of debate. In this review, we focus on long non-coding RNAs (lncRNAs) that are involved in cancer. We define lncRNAs and present a cancer-oriented list of lncRNAs, list some tools (for example, public databases) that classify lncRNAs or that scan genome spans of interest to find whether known lncRNAs reside there, and describe some of the functions of lncRNAs and the possible genetic mechanisms that underlie lncRNA expression changes in cancer, as well as current and potential future applications of lncRNA research in the treatment of cancer.RS is supported as a fellow of the TALENTS Programme (7th R&D Framework Programme, Specific Programme: PEOPLE—Marie Curie Actions—COFUND). MIA is supported as a PhD fellow of the FCT (Fundação para a Ciência e Tecnologia), Portugal. GAC is supported as a fellow by The University of Texas MD Anderson Cancer Center Research Trust, as a research scholar by The University of Texas System Regents, and by the Chronic Lymphocytic Leukemia Global Research Foundation. Work in GAC’s laboratory is supported in part by the NIH/ NCI (CA135444); a Department of Defense Breast Cancer Idea Award; Developmental Research Awards from the Breast Cancer, Ovarian Cancer, Brain Cancer, Multiple Myeloma and Leukemia Specialized Programs of Research Excellence (SPORE) grants from the National Institutes of Health; a 2009 Seena Magowitz–Pancreatic Cancer Action Network AACR Pilot Grant; the Laura and John Arnold Foundation and the RGK Foundation

    The Genetic Signatures of Noncoding RNAs

    Get PDF
    The majority of the genome in animals and plants is transcribed in a developmentally regulated manner to produce large numbers of non–protein-coding RNAs (ncRNAs), whose incidence increases with developmental complexity. There is growing evidence that these transcripts are functional, particularly in the regulation of epigenetic processes, leading to the suggestion that they compose a hitherto hidden layer of genomic programming in humans and other complex organisms. However, to date, very few have been identified in genetic screens. Here I show that this is explicable by an historic emphasis, both phenotypically and technically, on mutations in protein-coding sequences, and by presumptions about the nature of regulatory mutations. Most variations in regulatory sequences produce relatively subtle phenotypic changes, in contrast to mutations in protein-coding sequences that frequently cause catastrophic component failure. Until recently, most mapping projects have focused on protein-coding sequences, and the limited number of identified regulatory mutations have been interpreted as affecting conventional cis-acting promoter and enhancer elements, although these regions are often themselves transcribed. Moreover, ncRNA-directed regulatory circuits underpin most, if not all, complex genetic phenomena in eukaryotes, including RNA interference-related processes such as transcriptional and post-transcriptional gene silencing, position effect variegation, hybrid dysgenesis, chromosome dosage compensation, parental imprinting and allelic exclusion, paramutation, and possibly transvection and transinduction. The next frontier is the identification and functional characterization of the myriad sequence variations that influence quantitative traits, disease susceptibility, and other complex characteristics, which are being shown by genome-wide association studies to lie mostly in noncoding, presumably regulatory, regions. There is every possibility that many of these variations will alter the interactions between regulatory RNAs and their targets, a prospect that should be borne in mind in future functional analyses

    p53 and little brother p53/47: linking IRES activities with protein functions

    No full text
    The tumor suppressor p53 represents a paradigm for gene regulation. Its rapid induction in response to DNA damage conditions has been attributed to both increased half-life of p53 protein and also increased translation of p53 mRNA. Recent advances in our understanding of the post-transcriptional regulation of p53 include the discovery of internal ribosome entry sites (IRESs) within the p53 mRNA. These IRES elements regulate the translation of the full length as well as the N-terminally truncated isoform, p53/47. The p53/47 isoform is generated by alternative initiation at an internal AUG codon present within the p53 ORF. The aim of this review is to summarize the role of translational control mechanisms in regulating p53 functions. We discuss here in detail how diverse cellular stress pathways trigger alterations in the cap-dependent and cap-independent translation of p53 mRNA and how changes in the relative expression levels of p53 isoforms result in more differentiated p53 activity

    Defying Standard Criteria for Digital Replantation: A Case Series

    Get PDF
    INTRODUCTION: There is much controversy regarding the current indications and contraindications for digital replantation. PRESENTATION OF CASE: Three patients with absolute contraindications for digital replantation according to classical criteria are presented (Case 1: multilevel amputation of the hand and fingers; Case 3: avulsion of the thumb; Case 4: index amputation proximal to the insertion of the flexor digitorum superficialis). In addition a patient with a very distal digital amputation (Case 2), whose indication for replantation is controversial is also presented. In all cases, the patients were replanted and showed good functional and aesthetical results. DISCUSSION: Most authors advocate that the classical indications for replantation have been validated by experience, are predicated on the potential for long-term function, and should be followed in most if not all cases. However, some surgeons have been adopting a more liberal attitude with good results. CONCLUSION: The clinical cases presented in this paper suggest that the standard criteria for digital replantation should not be followed rigidly but instead should be regarded as a general guide
    corecore