35 research outputs found

    Influence of steps on the tilting and adsorption dynamics of ordered Pn films on vicinal Ag(111) surfaces

    Get PDF
    Here we present a structural study of pentacene (Pn) thin films on vicinal Ag(111) surfaces by He atom diffraction measurements and density functional theory (DFT) calculations supplemented with van der Waals (vdW) interactions. Our He atom diffraction results suggest initial adsorption at the step edges evidenced by initial slow specular reflection intensity decay rate as a function of Pn deposition time. In parallel with the experimental findings, our DFT+vdW calculations predict the step edges as the most stable adsorption site on the surface. An isolated molecule adsorbs as tilted on the step edge with a binding energy of 1.4 eV. In addition, a complete monolayer (ML) with pentacenes flat on the terraces and tilted only at the step edges is found to be more stable than one with all lying flat or tilted molecules, which in turn influences multilayers. Hence our results suggest that step edges can trap Pn molecules and act as nucleation sites for the growth of ordered thin films with a crystal structure similar to that of bulk Pn.Comment: 4 pages, 4 figures, 1 tabl

    Coexistence of one- and two-dimensional supramolecular assemblies of terephthalic acid on Pd(111) due to self-limiting deprotonation

    Get PDF
    The adsorption of terephthalic acid [C6H4(COOH)(2), TPA] on a Pd(111) surface has been investigated by means of scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy, and near-edge x-ray absorption fine structure spectroscopy under ultrahigh vacuum conditions at room temperature. We find the coexistence of one- (1D) and two-dimensional (2D) molecular ordering. Our analysis indicates that the 1D phase consists of intact TPA chains stabilized by a dimerization of the self-complementary carboxyl groups, whereas in the 2D phase, consisting of deprotonated entities, the molecules form lateral ionic hydrogen bonds. The supramolecular growth dynamics and the resulting structures are explained by a self-limiting deprotonation process mediated by the catalytic activity of the Pd surface. Our models for the molecular ordering are supported by molecular mechanics calculations and a simulation of high resolution STM images

    Stabilization of bimolecular islands on ultrathin NaCl films by a vicinal substrate

    Get PDF
    The structure of ultrathin NaCl films on Au(1 1 1) and on Au(11 12 12), as well as the one of bimolecular 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) and 1,4-bis-(2,4-diamino-1,3,5,-triazine)-benzene (BDATB) islands on NaCl films on both surfaces have been studied with a low-temperature scanning tunnelling microscope. We show that intermixed bimolecular assemblies based on selective three-fold hydrogen-bonding (H-bonding), that have previously been observed on Au(1 1 1) and on Au(11 12 12), can also be stabilized on insulating NaCl films on Au, however, only if these films are grown on Au(11 12 12) and not on Au(1 1 1). The behaviour of the heterocomplex structures is found to be largely influenced by the structural properties of the underlying substrate and by the number of NaCl layers. On a partly NaCl-covered Au(1 1 1) surface, the excess of molecules after completion of the first layer on Au prefers to form a second molecular layer based on ordered heterocomplex structures rather than to adsorb on the NaCl islands. The use of a vicinal surface together with the strong cohesion characteristic of the NaCl film introduces smooth elastic deformations on the NaCl(0 0 1) plane. As a consequence, the periodically modified structure of the overlayer provides preferential binding sites and allows adsorption of two-dimensional molecular structures. In contrast to what is observed on Au(11 12 12), the molecular domains on the NaCl film do not follow the Au step directions, but the NaCl(0 0 1) high symmetry directions. Our results provide a strategy to increase the adsorption energy of flat molecules on insulating layers by choosing a vicinal metal substrate. © 2009 Elsevier B.V. All rights reserved

    Strain-relief pattern as guide for the formation of surface-supported bimolecular nanoribbons

    Get PDF
    We demonstrate the suitability of the Ag/Pt(111) strain-relief pattern as efficient template for controlling the formation of well defined heteromolecular nanostructures. Two different species of molecular building blocks with complementary end-group functionalities are combined on this surface, which results in the formation of robust bimolecular nanoribbons driven by the interplay of the site specific adsorption on the strain-relief pattern with the highly directional intermolecular hydrogen-bonding intrinsic to the free bimolecular system

    Functionalizing hydrogen-bonded surface networks with self-assembled monolayers

    No full text
    One of the central challenges in nanotechnology is the development of flexible and efficient methods for creating ordered structures with nanometre precision over an extended length scale. Supramolecular self- assembly on surfaces offers attractive features in this regard: it is a 'bottom- up' approach and thus allows the simple and rapid creation of surface assemblies(1,2), which are readily tuned through the choice of molecular building blocks used and stabilized by hydrogen bonding(3-8), van der Waals interactions(9), pi-pi bonding(10,11) or metal coordination(12,13) between the blocks. Assemblies in the form of two- dimensional open networks(3,9,10,13-17) are of particular interest for possible applications because well- defined pores can be used for the precise localization and confinement of guest entities such as molecules or clusters, which can add functionality to the supramolecular network. Another widely used method for producing surface structures involves self- assembled monolayers (SAMs)(18), which have introduced unprecedented flexibility in our ability to tailor interfaces and generate patterned surfaces(19-22). But SAMs are part of a top-down technology that is limited in terms of the spatial resolution that can be achieved. We therefore rationalized that a particularly powerful fabrication platform might be realized by combining non- covalent self- assembly of porous networks and SAMs, with the former providing nanometre- scale precision and the latter allowing versatile functionalization. Here we show that the two strategies can indeed be combined to create integrated network SAM hybrid systems that are sufficiently robust for further processing. We show that the supramolecular network and the SAM can both be deposited from solution, which should enable the widespread and flexible use of this combined fabrication method.</p
    corecore