10 research outputs found
Tactile Mapping and Localization from High-Resolution Tactile Imprints
This work studies the problem of shape reconstruction and object localization
using a vision-based tactile sensor, GelSlim. The main contributions are the
recovery of local shapes from contact, an approach to reconstruct the tactile
shape of objects from tactile imprints, and an accurate method for object
localization of previously reconstructed objects. The algorithms can be applied
to a large variety of 3D objects and provide accurate tactile feedback for
in-hand manipulation. Results show that by exploiting the dense tactile
information we can reconstruct the shape of objects with high accuracy and do
on-line object identification and localization, opening the door to reactive
manipulation guided by tactile sensing. We provide videos and supplemental
information in the project's website
http://web.mit.edu/mcube/research/tactile_localization.html.Comment: ICRA 2019, 7 pages, 7 figures. Website:
http://web.mit.edu/mcube/research/tactile_localization.html Video:
https://youtu.be/uMkspjmDbq
Automatisk speltestning med personlighet : Multi-task förstÀrkning lÀrande för automatisk speltestning
This work presents a scalable solution to automate game-testing. Traditionally, game-testing has been performed by either human players or scripted Artificial Intelligence (AI) agents. While the first produces the most reliable results, the process of organizing testing sessions is time consuming. On the other hand, scripted AI dramatically speeds up the process, however, the insights it provides are far less useful: these agentsâ behaviors are highly predictable. The presented solution takes the best of both worlds: the automation of scripted AI, and the richness of human testing by framing the problem within the Deep Reinforcement Learning (DRL) paradigm. Reinforcement Learning (RL) agents are trained to adapt to any unseen level and present customizable human personality traits: such as aggressiveness, greed, fear, etc. This is achieved exploring the problem from a multi-task RL setting. Each personality trait is understood as a different task which can be linearly combined by the proposed algorithm. Furthermore, since Artificial Neural Networks (ANNs) have been used to model the agentâs policies, the solution is highly adaptable and scalable. This thesis reviews the state of the art in both automatic game-testing and RL, and proposes a solution to the above-mentioned problem. Finally, promising results are obtained evaluating the solution on two different environments: a simple environment used to quantify the quality of the designed algorithm, and a generic game environment useful to show-case its applicability. In particular, results show that the designed agent is able to perform good on game levels never seen before. In addition, the agent can display any convex combination of the trained behaviors. Furthermore, its performance is as good as if it had been specifically trained on that particular combination. Detta arbete presenterar en skalbar lösning för att automatisera speltestning. Traditionellt har speltestning utförts av antingen mĂ€nskliga spelare eller förprogrammerade agenter. Ăven om det förstanĂ€mnda ger de mest tillförlitliga resultaten Ă€r processen tidskrĂ€vande. Ă
andra sidan pÄskyndar förprogrammerade agenter processen dramatiskt, men de insikter som de ger Àr mycket mindre anvÀndbara: dessa agenters beteenden Àr mycket förutsÀgbara. Den presenterade lösningen anvÀnder det bÀsta av tvÄ vÀrldar: automatiseringsmöjligheten frÄn förprogrammerade agenter samt möjligheten att simulera djupet av mÀnskliga tester genom att inrama problemet inom paradigmet Djup FörstÀrkningsinlÀrning. En agent baserad pÄ förstÀrkningsinlÀrning trÀnas i att anpassa sig till tidigare osedda spelmiljöer och presenterar anpassningsbara mÀnskliga personlighetsdrag: som aggressivitet, girighet, rÀdsla... Eftersom Artificiella Neurala NÀtverk (ANNs) har anvÀnts för att modellera agentens policyer Àr lösningen potentiellt mycket anpassnings- och skalbar. Denna rapport granskar först den senaste forskningen inom bÄde automatisk speltestning och förstÀrkningsinlÀrning. Senare presenteras en lösning för ovan nÀmnda problem. Slutligen evalueras lösningen i tvÄ olika miljöer med lovande resultat. Den första miljön anvÀnds för att kvantifiera kvaliteten pÄ den designade algoritmen. Den andra Àr en generisk spelmiljö som Àr anvÀndbar för att pÄvisa lösningens tillÀmplighet
Learning based regrasp policy from tactile feedback
In the context of robotic object manipulation, this work presents a simple regrasp policy based on the tactile feedback captured by the "fingers" of the robot gripper. To do so, there is a learning based function that assesses the quality of a grasp and another model based methodology that searches for better grasping points. These algorithms have been tested on a wide variety of unknown objects, obtaining a significant grasp success improvement.Outgoin
Automatisk speltestning med personlighet : Multi-task förstÀrkning lÀrande för automatisk speltestning
This work presents a scalable solution to automate game-testing. Traditionally, game-testing has been performed by either human players or scripted Artificial Intelligence (AI) agents. While the first produces the most reliable results, the process of organizing testing sessions is time consuming. On the other hand, scripted AI dramatically speeds up the process, however, the insights it provides are far less useful: these agentsâ behaviors are highly predictable. The presented solution takes the best of both worlds: the automation of scripted AI, and the richness of human testing by framing the problem within the Deep Reinforcement Learning (DRL) paradigm. Reinforcement Learning (RL) agents are trained to adapt to any unseen level and present customizable human personality traits: such as aggressiveness, greed, fear, etc. This is achieved exploring the problem from a multi-task RL setting. Each personality trait is understood as a different task which can be linearly combined by the proposed algorithm. Furthermore, since Artificial Neural Networks (ANNs) have been used to model the agentâs policies, the solution is highly adaptable and scalable. This thesis reviews the state of the art in both automatic game-testing and RL, and proposes a solution to the above-mentioned problem. Finally, promising results are obtained evaluating the solution on two different environments: a simple environment used to quantify the quality of the designed algorithm, and a generic game environment useful to show-case its applicability. In particular, results show that the designed agent is able to perform good on game levels never seen before. In addition, the agent can display any convex combination of the trained behaviors. Furthermore, its performance is as good as if it had been specifically trained on that particular combination. Detta arbete presenterar en skalbar lösning för att automatisera speltestning. Traditionellt har speltestning utförts av antingen mĂ€nskliga spelare eller förprogrammerade agenter. Ăven om det förstanĂ€mnda ger de mest tillförlitliga resultaten Ă€r processen tidskrĂ€vande. Ă
andra sidan pÄskyndar förprogrammerade agenter processen dramatiskt, men de insikter som de ger Àr mycket mindre anvÀndbara: dessa agenters beteenden Àr mycket förutsÀgbara. Den presenterade lösningen anvÀnder det bÀsta av tvÄ vÀrldar: automatiseringsmöjligheten frÄn förprogrammerade agenter samt möjligheten att simulera djupet av mÀnskliga tester genom att inrama problemet inom paradigmet Djup FörstÀrkningsinlÀrning. En agent baserad pÄ förstÀrkningsinlÀrning trÀnas i att anpassa sig till tidigare osedda spelmiljöer och presenterar anpassningsbara mÀnskliga personlighetsdrag: som aggressivitet, girighet, rÀdsla... Eftersom Artificiella Neurala NÀtverk (ANNs) har anvÀnts för att modellera agentens policyer Àr lösningen potentiellt mycket anpassnings- och skalbar. Denna rapport granskar först den senaste forskningen inom bÄde automatisk speltestning och förstÀrkningsinlÀrning. Senare presenteras en lösning för ovan nÀmnda problem. Slutligen evalueras lösningen i tvÄ olika miljöer med lovande resultat. Den första miljön anvÀnds för att kvantifiera kvaliteten pÄ den designade algoritmen. Den andra Àr en generisk spelmiljö som Àr anvÀndbar för att pÄvisa lösningens tillÀmplighet
Learning based regrasp policy from tactile feedback
In the context of robotic object manipulation, this work presents a simple regrasp policy based on the tactile feedback captured by the "fingers" of the robot gripper. To do so, there is a learning based function that assesses the quality of a grasp and another model based methodology that searches for better grasping points. These algorithms have been tested on a wide variety of unknown objects, obtaining a significant grasp success improvement.Outgoin
Learning based regrasp policy from tactile feedback
In the context of robotic object manipulation, this work presents a simple regrasp policy based on the tactile feedback captured by the "fingers" of the robot gripper. To do so, there is a learning based function that assesses the quality of a grasp and another model based methodology that searches for better grasping points. These algorithms have been tested on a wide variety of unknown objects, obtaining a significant grasp success improvement.Outgoin
Learning based regrasp policy from tactile feedback
The purpose of this project is to find how to extract valuable information and applications of a tactile
sensor for robotic hands called GelSlim in the context of robotic manipulation. GelSlim is a modified
version of a relatively new sensor named GelSight, optimized for the task of bin picking. With this end,
this document presents a novel regrasp control policy that makes use of tactile sensing to plan local grasp
adjustments. The approach determines regrasp actions by virtually searching for local transformations
of tactile measurements that improve the quality of the grasp.
First, a tactile-based grasp quality metric is trained using deep convolutional neural networks on over
2800 grasps. The quality of each grasp, a value between 0 and 1, is labeled experimentally by measuring
its resistance to external perturbations in an automated way.
Secondly, when performing a grasp, this model is used to get an estimation of its quality and find possible
readjustments that would improve it, relying solely on the tactile feedback. In order to get these improved
regrasps, the tactile imprint got from the initial grasp is virtually modified so as to match the one that
the associated robot motion would present. The newly generated tactile imprints are evaluated with the
learned grasp quality network and the regrasp action is chosen to maximize the grasp quality.
Results show that the grasp quality network can predict the outcome of grasps with an average accuracy
of 85% on known objects and 75% on a cross validation set of 12 objects. The regrasp control policy
improves the success rate of grasp actions by an average relative increase of 70% on a test set of 8
objects.Peer reviewe
Tactile Regrasp: Grasp Adjustments via Simulated Tactile Transformations
This paper presents a novel regrasp control policy that makes use of tactile sensing to plan local grasp adjustments.Our approach determines regrasp actions by virtually searching for local transformations of tactile measurements that improve the quality of the grasp.First, we construct a tactile-based grasp quality metricusing a deep convolutional neural network trained on over2800 grasps. The quality of each grasp, a continuous value between 0 and 1, is determined experimentally by measuring its resistance to external perturbations. Second, we simulate the tactile imprints associated with robot motions relative to the initial grasp by performing rigid-body transformations of the given tactile measurements. The newly generated tactile imprints are evaluated with the learned grasp quality network and the regrasp action is chosen to maximize the grasp quality.Results show that the grasp quality network can predict the outcome of grasps with an average accuracy of 85%on known objects and 75%on novel objects. The regrasp control policy improves the success rate of grasp actions by an average relative increase of 70%on a test set of 8 objects. We provide a video summarizing our approach at https://youtu.be/gjn7DmfpwDk