3,151 research outputs found

    Atomic Resolution Imaging of Currents in Nanoscopic Quantum Networks via Scanning Tunneling Microscopy

    Full text link
    We propose a new method for atomic-scale imaging of spatial current patterns in nanoscopic quantum networks by using scanning tunneling microscopy (STM). By measuring the current flowing from the STM tip into one of the leads attached to the network as a function of tip position, one obtains an atomically resolved spatial image of "current riverbeds" whose spatial structure reflects the coherent flow of electrons out of equilibrium. We show that this method can be successfully applied in variety of network topologies, and is robust against dephasing effects.Comment: 5 page

    Classification and Spectral Evolution of Outbursts of Aql X-1

    Full text link
    We present a broad classification of all outbursts detected with the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer (RXTE) and the Monitor of All Sky X-Ray Image (MAXI) of Aql X-1. We identify three types of outbursts; long-high, medium-low, and short-low, based on the duration and maximum flux. We analyse the trends in the "phase-space" of flux-derivative versus flux to demonstrate the differences in the three identified outburst types. We present a spectral analysis of the observations of Aql X-1 performed by the Proportional Counter Array (PCA) onboard RXTE during the 2000 and 2011 outbursts of the long-high class and the 2010 outburst of the medium-low class. We model the source spectrum with a hybrid thermal/non-thermal hot plasma emission model (EQPAIR in XSPEC, Coppi 2000) together with a Gaussian component to model the Fe K_alpha emission line. We construct time histories of the source flux, the optical depth of the corona (tau), the seed photon temperature (kT_bb) and the hard state compactness (l_h) for these three outbursts. We show that the physical parameters of either classes reach the same values throughout the outbursts, the only difference being the maximum flux. We discuss our results in the terms of modes of interaction of the star with the disc and size of the disc kept hot by irradiation. We conclude that irradiation is the dominant physical process leading to the different classes of outbursts.Comment: MNRAS accepted. 12 pages, 9 figures, 3 table

    Bianchi I Model: An Alternative Way To Model The Presentday Universe

    Get PDF
    Although the new era of high precision cosmology of the cosmic microwave background (CMB) radiation improves our knowledge to understand the infant as well as the presentday Universe, it also leads us to question the main assumption of the exact isotropy of the CMB. There are two pieces of observational evidence that hint towards there being no exact isotropy. These are first the existence of small anisotropy deviations from isotropy of the CMB radiation and second, the presence of large angle anomalies, although the existence of these anomalies is currently a huge matter of debate. These hints are particularly important since isotropy is one of the two main postulates of the Copernican principle on which the FRW models are built. This almost isotropic CMB radiation implies that the universe is almost a FRW universe, as is proved by previous studies. Assuming the matter component forms the deviations from isotropy in the CMB density fluctuations when matter and radiation decouples, we here attempt to find possible constraints on the FRW type scale and Hubble parameter by using the Bianchi type I (BI) anisotropic model which is asymptotically equivalent to the standard FRW. To obtain constraints on such an anisotropic model, we derive average and late-time shear values that come from the anisotropy upper limits of the recent Planck data based on a model independent shear parameter of Maartens et al. (1995a,b) and from the theoretical consistency relation. These constraints lead us to obtain a BI model which becomes an almost-FRW model in time, and which is consistent with the latest observational data of the CMB.Comment: 16 pages, 4 figures, accepted in MNRA

    Ωcγ→Ωc∗\Omega_c \gamma \rightarrow\Omega_c^\ast transition in lattice QCD

    Get PDF
    We study the electromagnetic Ωcγ→Ωc∗\Omega_c \gamma \rightarrow\Omega_c^\ast transition in 2+1 flavor lattice QCD, which gives access to the dominant decay mode of Ωc∗\Omega_c^\ast baryon. The magnetic dipole and the electric quadrupole transition form factors are computed. The magnetic dipole form factor is found to be mainly determined by the strange quark and the electric quadrupole form factor to be negligibly small, in consistency with the quark model. We also evaluate the helicity amplitudes and the decay rate.Comment: 8 pages, 1 figure. Added references and discussio

    A look inside charmed-strange baryons from lattice QCD

    Full text link
    The electromagnetic form factors of the spin-3/2 Ω\Omega baryons, namely Ω\Omega, Ωc∗\Omega_c^\ast, Ωcc∗\Omega_{cc}^\ast and Ωccc\Omega_{ccc}, are calculated in full QCD on 323×6432^3\times 64 PACS-CS lattices with a pion mass of 156(9) MeV. The electric charge radii and magnetic moments from the E0E0 and M1M1 multipole form factors are extracted. Results for the electric quadrupole form factors, E2E2, are also given. Quark sector contributions are computed individually for each observable and then combined to obtain the baryon properties. We find that the charm quark contributions are systematically smaller than the strange-quark contributions in the case of the charge radii and magnetic moments. E2E2 moments of the Ωcc∗\Omega_{cc}^\ast and Ωccc\Omega_{ccc} provide a statistically significant data to conclude that their electric charge distributions are deformed to an oblate shape. Properties of the spin-1/2 Ωc\Omega_c and Ωcc\Omega_{cc} baryons are also computed and a thorough comparison is given. This complete study gives valuable hints about the heavy-quark dynamics in charmed hadrons.Comment: 14 pages, 14 figures. Includes a subsection on the systematic effect

    Building Morphological Chains for Agglutinative Languages

    Get PDF
    In this paper, we build morphological chains for agglutinative languages by using a log-linear model for the morphological segmentation task. The model is based on the unsupervised morphological segmentation system called MorphoChains. We extend MorphoChains log linear model by expanding the candidate space recursively to cover more split points for agglutinative languages such as Turkish, whereas in the original model candidates are generated by considering only binary segmentation of each word. The results show that we improve the state-of-art Turkish scores by 12% having a F-measure of 72% and we improve the English scores by 3% having a F-measure of 74%. Eventually, the system outperforms both MorphoChains and other well-known unsupervised morphological segmentation systems. The results indicate that candidate generation plays an important role in such an unsupervised log-linear model that is learned using contrastive estimation with negative samples.Comment: 10 pages, accepted and presented at the CICLing 2017 (18th International Conference on Intelligent Text Processing and Computational Linguistics
    • …
    corecore