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We study the electromagnetic �cγ → �∗
c transition in 2 + 1 flavor lattice QCD, which gives access to the 

dominant decay mode of �∗
c baryon. The magnetic dipole and the electric quadrupole transition form 

factors are computed. The magnetic dipole form factor is found to be mainly determined by the strange 
quark and the electric quadrupole form factor to be negligibly small, in consistency with the quark model. 
We also evaluate the helicity amplitudes and the decay rate.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Recently there has been a significant progress in our under-
standing of the heavy-flavor hadron sector. Experimentally, all the 
ground-state single-charmed baryons and several excited states, 
as predicted by the quark model, have been confirmed [1]. Un-
like other single-charmed baryons, a precise observation of �c

baryon had been long overdue. Only recently, Belle Collaboration 
has made a rigorous experimental study of �c using the decay 
�c

0 → �−π+ [2].
The �0

c (css) has the quantum numbers J P = 1
2

+
and is the 

heaviest known single charmed hadron that decays weakly. Within 
the multiplet structure of flavor SU(4), �c belongs to a sextet of 
flavor symmetric states, which sits on the second layer of the fla-
vor mixed-symmetric 20-plet. The average mass value reported by 
the Particle Data Group (PDG) is m�c = 2695.2 ± 1.7 MeV [1].

The excited �∗
c

0(css) baryon was first observed by BABAR Col-
laboration in the radiative decay �∗

c → �cγ [3]. Belle Collabo-
ration has confirmed their observation by reconstructing �∗

c in 
the same radiative decay mode [2]. They measured the relative 
mass difference with respect to the ground state m�∗

c
− m�c =

70.7 ± 0.9+0.1
−0.9 MeV in very good agreement with the BABAR ob-
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servation. The average mass value reported by PDG is m�∗
c

=
2765.9 ± 2.0 MeV [1]. The quantum numbers have not been mea-
sured but natural assignment is that it completes the ground state 
J P = 3

2
+

sextet, which sits on the second layer of the flavor-
symmetric 20-plet of SU(4). The mass difference with respect to 
the ground state is too small for any strong decay to occur, there-
fore the radiative channel �∗

c → �cγ is the dominant decay mode.
In addition to BABAR and Belle Collaborations, experimental 

facilities such as LHCb, PANDA, Belle II, BESIII and J-PARC are ex-
pected to give a more precise determination of charmed baryon 
spectroscopy. Concurrently, recent lattice-QCD studies on the spec-
troscopy of charmed hadrons are also very promising. The ground-
state charmed baryons with spin up to 3/2 have been studied in 
quenched [4,5] and full QCD [6–9]. The results for baryon masses 
as determined from lattice QCD are in good agreement with exper-
iment.

Recently we have examined the charmed baryons in lattice 
QCD in order to reveal their electromagnetic structure [10,11]. We 
have extracted the charge radii and magnetic moments of J = 1/2
charmed baryons by computing their elastic electromagnetic form 
factors on the lattice. A similar study for J = 3/2 baryons is in 
progress. A phenomenologically more interesting problem is the 
electromagnetic transitions between J = 1/2 and J = 3/2 baryons, 
which are more accessible by experiments as explained above.

Being motivated by the experimental discovery of the �∗
c

baryon in the radiative decay mode, in the present work we give a 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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timely study of the J = 1/2 → J = 3/2 electromagnetic transition
of single charmed strange baryons in lattice QCD. In particular 
we study the �cγ → �∗

c transition, which gives access to three 
Sachs form factors, the helicity amplitudes, the decay width and 
the lifetime. This work is reminiscent of Refs. [12–15], where the 
electromagnetic N to �, and the other octet to decuplet transitions 
have been studied. The electromagnetic transitions of charmed 
baryons have also been studied within heavy hadron chiral per-
turbation theory [16–18] and in the quark models [19–21].

The three transition form factors, namely, the magnetic dipole 
(M1), the electric quadrupole (E2) and the electric charge
quadrupole (C2) provide valuable information about the structure 
and shape of J = 1/2 and J = 3/2 baryons. Earlier studies have 
focused on the transition moments between N and �. Experi-
mentally, pure single spin-flip M1 transition has been found to 
dominate. Of special interest is the small but non-vanishing val-
ues of E2 and C2 moments, implying that the shapes of N and 
� deviate from spherical symmetry [22]. Quark models predict a 
nonzero value for E2 and C2 [23], which has also been confirmed 
experimentally [24,25]. However, the results from various theoret-
ical approaches are not in complete agreement with experiment 
and this issue is still unsettled.

The experimental results for �cγ → �∗
c , on the other hand, are 

not yet precise enough to allow a determination of the transition 
strengths. In this work, we will mainly focus on the M1 and E2
transition form factors. Unlike in the case of Nγ → �, the mass 
splitting between �c and �∗

c can be reproduced on the lattice and 
an accurate contact can be made to phenomenological observables 
via these two form factors. We employ near physical 2 + 1-flavor 
lattices that correspond to a pion mass of approximately 156 MeV. 
The data for electromagnetic transition form factors are often nois-
ier than those for elastic form factors, particularly for C2 form 
factor. Considering also the limited number of gauge configura-
tions we have at the smallest quark mass, we study the M1 and 
E2 form factors for the lowest allowed lattice momentum trans-
fer. We, however, make contact with the transition moments at 
zero-momentum transfer by assuming a simple scaling at low mo-
mentum transfer values [12].

2. Lattice formulation

Electromagnetic transition form factors for �cγ → �∗
c can be 

calculated by considering the baryon matrix elements of the elec-
tromagnetic vector current Jμ = ∑

q

2
3 c̄(x)γμc(x) − 1

3 s̄(x)γμs(x). 

The matrix element can be written in the following form

〈�∗
c (p′, s′)|Jμ|�c(p, s)〉

= i

√
2

3

(
m∗ m

E∗(p′)E(p)

)
ūτ (p′, s′)Oτμu(p, s), (1)

with the operator Oτμ given in terms of Sachs form factors as [26]

Oτμ = G M1(q
2)K τμ

M1 + G E2(q
2)K τμ

E2 + GC2(q
2)K τμ

C2 , (2)

where

K τμ
M1 = −3

(
(m∗ + m)2 − q2

)−1
iετμ(Pq) (m∗ + m)/2m, (3)

K τμ
E2 = −K τμ

M1 − 6�−1(q2) iετβ(Pq) εμβ(p′q) γ5(m∗ + m)/m,

(4)

K τμ
C2

= −3�−1(q2) qτ (q2 Pμ − q · P qμ) iγ5(m∗ + m)/m. (5)

Here p and p′ denote the incoming and the outgoing momenta, 
respectively, q = p′ − p is the transferred four-momentum, P =
(p′ + p)/2 and
�(q2) =
(
(m∗ + m)2 − q2

)(
(m∗ − m)2 − q2

)
. (6)

We use the shorthand notation ετμ(Pq) = ετμαν Pαqν . The spins 
are denoted by s, s′ and the masses of �∗

c and �c by m∗ and m, 
respectively. u(p, s) is the Dirac spinor and uτ (p, s) is the Rarita–
Schwinger spin vector. For real photons, GC2(0) does not play any 
role as it is proportional to the longitudinal helicity amplitude.

The Rarita–Schwinger spin sum for the spin-3/2 field in Eu-
clidean space is given by

∑
s

uσ (p, s)ūτ (p, s)

= −iγ · p + m∗
2m∗

[
gστ − 1

3
γσ γτ + 2pσ pτ

3m2∗
− i

pσ γτ − pτ γσ

3m∗

]
,

(7)

and the Dirac spinor spin sum by

∑
s

u(p, s)ū(p, s) = −iγ · p + m

2m
. (8)

We refer the form factors G M1, G E2 and GC2 as the magnetic 
dipole, the electric quadrupole and the electric charge quadrupole 
transition form factors, respectively.

To extract the form factors we consider the following matrix 
elements,

〈G
�∗

c �∗
c

στ (t;p;�4)〉 =
∑

x

e−ip·x�αα′
4 × 〈vac|T [ηα

σ (x)η̄α′
τ (0)]|vac〉,

(9)

〈G�c�c (t;p;�4)〉 =
∑

x

e−ip·x�αα′
4 × 〈vac|T [ηα(x)η̄α′

(0)]|vac〉,
(10)

〈G
�∗

c jμ�c
σ (t2, t1;p′,p;�)〉
= −i

∑
x2,x1

e−ip·x2 eiq·x1�αα′ 〈vac|T [ηα
σ (x2) jμ(x1)η̄

α′
(0)]|vac〉,

(11)

with the spin projection matrices defined as

�i = 1

2

(
σi 0
0 0

)
, �4 = 1

2

(
I 0
0 0

)
. (12)

Here, α, α′ are the Dirac indices, σ and τ are the Lorentz indices 
of the spin-3/2 interpolating field and σi are the Pauli spin matri-
ces. An initial �c state is created at time zero and interacts with 
the external electromagnetic field at time t1. At time t2 the final 
�∗

c state is annihilated.
The baryon interpolating fields are chosen, similarly to those of 

� and N as

ημ(x) = 1√
3
ε i jk

{
2[sT i(x)Cγμc j(x)]sk(x)

+ [sT i(x)Cγμs j(x)]ck(x)
}

, (13)

η(x) = ε i jk[sT i(x)Cγ5c j(x)]sk(x), (14)

where i, j, k denote the color indices and C = γ4γ2. It has been 
shown in Ref. [9] that the interpolating field in Eq. (13) has mini-
mal overlap with spin-1/2 states and therefore does not need any 
spin-3/2 projection.
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Table 1
The details of the gauge configurations used in this work [27]. We list the number of flavors (N f ), the lattice spacing (a), the lattice size (L), inverse gauge coupling (β), 
clover coefficient (cSW ), number of gauge configurations employed and the corresponding pion mass (mπ ).

N3
s × Nt N f a [fm] L [fm] β cSW # of conf. mπ [MeV]

323 × 64 2 + 1 0.0907(13) 2.90 1.90 1.715 194 156(7)(2)
To extract the form factors, we calculate the following ratio of 
the two- and three-point functions:

Rσ (t2, t1;p′,p;�;μ)

= 〈G
�∗

c jμ�c
σ (t2, t1;p′,p;�)〉
〈δi j G

�∗
c �∗

c
i j (t2;p′;�4)〉

⎡
⎣δi j G

�∗
c �∗

c
i j (2t1;p′;�4)〉

G�c�c (2t1;p;�4)〉

⎤
⎦

1/2

.

(15)

In the large Euclidean time limit, t2 − t1 and t1 � a, the unknown 
normalization factors cancel and the time dependence of the cor-
relators can be eliminated. Then the ratio in Eq. (15) reduces to 
the desired form

Rσ (t2, t1;p′,p;�;μ)
t1�a−−−−−→

t2−t1�a
�σ (p′,p;�;μ), (16)

where we can look for a plateau to extract the form factors. We 
choose the ratio in Eq. (15) among several other alternatives used 
in the literature [12–15] due to the good plateau region and the 
quality of the signal it yields.

We single out the Sachs form factors by choosing appropriate 
combinations of Lorentz direction μ and projection matrices �. 
When �c is produced at rest and momentum is inserted in one 
spatial direction, we have [13]

GC2(q
2) = C(q2)

2m∗
q2

�k(q,0; i�k;4) (17)

G M1(q
2) = C(q2)

1

|q|
[
�l(qk,0;�k; l) − m∗

E∗
�k(qk,0;�l; l)

]
, (18)

G E2(q
2) = C(q2)

1

|q|
[
�l(qk,0;�k; l) + m∗

E∗
�k(qk,0;�l; l)

]
, (19)

where

C(q2) = 2
√

6
E∗m∗

m + m∗

(
1 + m∗

E∗

)1/2 (
1 + q2

3m2∗

)1/2

, (20)

and k and l are two distinct indices running from 1 to 3. When �∗
c

is produced at rest, m∗ = E∗ in Eqs. (17)–(19) and

C(q2) = 2
√

6
Em

m∗ + m

(
1 + m

E

)1/2
(

1 + q2

3m2∗

)1/2

. (21)

We have run our simulations on gauge configurations gen-
erated by PACS-CS Collaboration [27] with the nonperturbatively 
O (a)-improved Wilson quark action and the Iwasaki gauge action. 
The details of the gauge configurations are given in Table 1. The 
simulations are carried out with near physical u, d sea quarks 
of hopping parameter κu,d = 0.13781. This corresponds to a pion 
mass of approximately 156 MeV [27]. The hopping parameter for 
the sea s quark is fixed to κ s

sea = 0.13640 and the hopping param-
eter for the valence s-quark is taken to be the same.

As we perform the simulations at only one (near-physical) 
quark mass, a chiral extrapolation cannot be made. However, we 
can make an estimation of an uncertainty anticipated from such an 
extrapolation, based on our simulations of elastic �c electromag-
netic form factors. We have performed the chiral extrapolations 
for electric/magnetic charge radii and the magnetic moment of �c
baryon in Ref. [11] again, including the data at mπ 	 156 MeV. We 
tried constant, linear and quadratic fit functions. For all cases, the 
chiral-extrapolated values and those at the smallest pion mass are 
in very good agreement within their error bars. Different fit forms 
we use imply a systematic error of less than 1%. Hence, we antici-
pate to have a similarly negligible error from such an extrapolation 
of M1 and E2 form factors here.

For the charm quarks, we apply the Fermilab method [28] in 
the form employed by the Fermilab Lattice and MILC Collabora-
tions [29,30]. A similar approach has been recently used to study 
charmonium, heavy-light meson resonances and their scattering 
with pion and kaon [31–33]. In this simplest form of the Fermi-
lab method, the Clover coefficients cE and cB in the action are 
set to the tadpole-improved value 1/u3

0, where u0 is the aver-
age link. Following the approach in Ref. [31], we estimate u0 to 
be the fourth root of the average plaquette. We determine the 
charm-quark hopping parameter κc nonperturbatively. To this end, 
we measure the spin-averaged static masses of charmonium and 
heavy-light mesons and tune their values accordingly to the exper-
imental results, which yields κc = 0.1246 [11].

We make our simulations with the lowest allowed lattice mo-
mentum transfer q = 2π/Nsa, where Ns is the spatial dimension 
of the lattice and a is the lattice spacing. This corresponds to 
three-momentum squared value of q2 = 0.183 GeV2. In order to 
access the values of the form factors at Q 2 = −q2 = 0, we will 
apply the procedure in Ref. [12] and assume that the momentum-
transfer dependence of the transition form factors is the same as 
the momentum dependence of the �∗

c baryon charge form factor. 
Such a scaling is also suggested by the experimentally measured 
proton form factors and it was used in previous analyses such 
as baryon octet to decuplet electromagnetic transition form fac-
tors [12]. While extrapolations in finite momentum suffer from 
large statistical errors since one has to rely on a functional form, 
the scaling approach provides a more precise determination of the 
form-factor values at zero momentum transfer. In applying this 
procedure, we consider s and c quark sectors separately as their 
contributions to the charge form factors scale differently. For in-
stance, the scaling of G M1 is given by

Gs,c
M1(0) = Gs,c

M1(q
2)

Gs,c
E (0)

Gs,c
E (q2)

. (22)

The heavy-quark contribution yields a harder form factor whereas 
the light-quark contribution is soft and the form factor falls off 
more rapidly [10,11]. The form factors are extracted in two kine-
matically different cases. In the first case, the �∗

c is produced at 
rest and the �c has momentum −q and in the second case, the 
�c is at rest and �∗

c carries momentum q.
In order to increase statistics, we insert positive and negative 

momentum in one of the spatial directions and make a simulta-
neous fit over all available data. We also consider current along 
all spatial directions. The source-sink time separation is fixed to 
1.09 fm (t2 = 12a), which has been shown to be sufficient to avoid 
excited state contaminations for electromagnetic form factors [11]. 
Using translational symmetry, we have employed multiple source-
sink pairs by shifting them 12 lattice units in the temporal direc-
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Table 2
The �c and �∗

c masses (at a pion mass of mπ = 156 MeV) together with the experimental values [1] and those obtained by PACS-CS [6] (at the physical point). We have 
also included results by ETMC [9] and Briceno et al. [8] obtained by chiral extrapolation.

This work PACS-CS [6] ETMC [9] Briceno et al. [8] Exp. [1]

m [GeV] 2.750(15) 2.673(17) 2.629(22) 2.681(48) 2.695(2)
m∗ [GeV] 2.828(15) 2.738(17) 2.709(26) 2.764(49) 2.766(2)

Fig. 1. The correlation function ratios �1 and �2 in Eq. (24) as functions of the current insertion time (t1) for s- and c-quark sectors. We also display Gs,c
M obtained using 

Eq. (25). The squares (triangles) denote the kinematical case when �∗
c (�c ) at rest.
tion. All statistical errors are estimated by the single-elimination 
jackknife analysis. We consider point-split lattice vector current

jμ = 1/2[q̄(x + μ)U †
μ(1 + γμ)q(x) − q̄(x)Uμ(1 − γμ)q(x + μ)],

(23)

which is conserved by Wilson fermions.
A wall-source/sink method [34] has been employed, which pro-

vides a simultaneous extraction of all spin, momentum and projec-
tion components of the correlators. The gauge non-invariant wall 
source/sink requires fixing the gauge. We fix the gauge to Coulomb, 
which gives a somewhat better coupling to the ground state. The 
delta function operator is smeared over the three spatial dimen-
sions of the time slice where the source is located, in a gauge-
invariant manner using a Gaussian form. In the case of s quark, 
we choose the smearing parameters so as to give a root-mean-
square radius of 〈rl〉 ∼ 0.5 fm. As for the charm quark, we adjust 
the smearing parameters to obtain 〈rc〉 = 〈rl〉/3.

3. Numerical results and discussion

We extract the �c and �∗
c masses using the two-point corre-

lators in Eqs. (9) and (10). Our results for the �c and �∗
c masses 

are given in Table 2, together with the experimental values and 
those obtained by other lattice collaborations. While we see a few 
percent discrepancy between our results obtained at a pion mass 
of mπ = 156 MeV and those of PACS-CS obtained at the physical 
point, the mass splitting m∗ − m is nicely produced in agreement 
with experiment.

We define the sum of all correlation-function ratios as

�1 = C(q2)

|q|
1

6

∑
k,l

�l(qk,0;�k; l),

�2 = C(q2)

|q|
1

6

∑
k,l

�k(qk,0;�l; l), (24)

so that Eq. (18) and Eq. (19) becomes,
G M1(q
2) = �1 − m∗

E∗
�2, (25)

G E2(q
2) = �1 + m∗

E∗
�2. (26)

Fig. 1 illustrates the �1 and �2 as functions of the current inser-
tion time, t1, for s- and c-quark sectors separately. The two ratios 
have opposite sign and they add constructively when they are 
subtracted. We extract the form factors by fitting the correlation-
function ratios by a horizontal line where a plateau develops. We 
illustrate both kinematical cases giving consistent results within 
their error bars. A clear plateau can be realized in both kinemat-
ical cases, being more flat when �c is produced at rest. We fit 
the correlation function ratios in the range t1 = [3, 6]. The statisti-
cal errors, on the other hand, are smaller when �∗

c is at rest. The 
values of the form factors from the two kinematical cases are con-
sistent with each other.

It is straightforward to extract G E2 once we construct the cor-
relation function ratios for G M1. The correlation functions have 
opposite signs and are of similar magnitudes, which result in a 
vanishing value for G E2 when they are added. We determine G E2
by fitting �1 and �2 separately and combining the results. This 
procedure gives consistent results with fitting the sum of the cor-
relation ratios.

Our numerical results are reported in Table 3. We give the val-
ues of G M1 and G E2 form factors at the lowest allowed momentum 
transfer and at zero momentum transfer for the two kinematical 
cases as explained above. The quark sector contributions to each 
form factor are given separately. The form factors can be inferred 
from individual quark contributions by

G M1(Q 2) = 2

3
× Gc

M1(Q 2) − 1

3
× Gs

M1(Q 2), (27)

and similarly for G E2(Q 2). The values of the form factors at Q 2 =
0 are extracted using the scaling assumption in Eq. (22).

Similarly to what has been observed in the case of elastic form 
factors [11], M1 form factor is dominantly determined by the con-
tribution of the s-quark sector, which is approximately one order 
of magnitude larger than that of the c-quark sector. This pattern 
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Table 3
The results for G M1 and G E2 form factors at the lowest allowed four-momentum transfer and at zero momentum transfer for the two kinematical cases. The quark sector 
contributions to each form factor are given separately. Note that the statistical uncertainty is large in G E2 and results are consistent with zero.

Q 2 [GeV2] Gs
M1(Q 2) Gc

M1(Q 2) G M1(Q 2) Gs
E2(Q 2) Gc

E2(Q 2) G E2(Q 2)

�∗
c at rest

0.180 1.257(67) −0.167(33) −0.530(28) 0.041(132) 0.008(26) −0.008(50)

0 1.622(87) −0.175(34) −0.657(33) 0.052(171) 0.009(27) −0.012(62)

�c at rest
0.168 1.269(177) −0.174(37) −0.539(78) −0.035(124) 0.061(25) 0.052(48)

0 1.637(229) −0.183(39) −0.667(96) −0.045(160) 0.064(27) 0.058(60)

Table 4
The results for the helicity amplitudes and the decay width in the rest frame of �∗

c . The helicity amplitudes are given at finite and zero momentum transfer. The zero-
momentum values are obtained using the scaling assumption in Eq. (22).

Q 2 [GeV2] f M1 10−2 [GeV−1/2] f E2 10−2 [GeV−1/2] A1/2 10−2 [GeV−1/2] A3/2 10−2 [GeV−1/2] � [keV]

0.180 −0.795(42) −0.012(75) 0.416(116) 0.678(71)
0 −0.988(50) −0.018(93) 0.521(145) 0.840(88) 0.074(8)
is consistent with hyperon transition form factors [12]: The heav-
ier quark contribution is systematically smaller than that of the 
light quarks. From a quark-model point of view, the coupling of 
the photon to the light quarks prevails in the heavy-quark limit 
and the heavy quark acts as a spectator. In this limit, the transi-
tion proceeds dominantly through the spin flip of the light degrees 
of freedom and only M1 transition is allowed. Only finite mass ef-
fects of the heavy quark may lead to a nonzero value of E2 form 
factor. Our results show that the two quark sectors contribute with 
opposite signs and yield a value with a statistical error of approx-
imately 5% when combined via Eq. (27). The values from the two 
kinematical cases are consistent with each other within their error 
bars.

In contrast, the extracted values of G E2 at finite and zero mo-
mentum transfer are small and consistent with zero within their 
error bars. A comparison of G M1 and G E2 reveals that the transi-
tion is entirely determined by M1 transition. In quark model, the 
quadrupole transition moments arise from the tensor-induced D-
state admixtures of the single-quark wavefunctions [23] and the 
two-quark exchange currents [35,36]. In the first, the spins of the 
quarks remain the same but an S-state quark is changed into a D-
state. The latter can be interpreted as the spin flip of a diquark 
inside the baryon. Given the dependence of the tensor force on 
the inverse quark mass, one would expect to obtain a smaller G E2
value for heavy baryons as compared to that in the light-baryon 
sector, in consistency with what we have found. The smallness of 
the E2 form factor can also be understood as a chiral suppres-
sion. The E2 amplitude is dominated by pion loops and the leading 
contribution comes from chiral logs which can be computed in 
heavy-baryon chiral perturbation theory [37,38].

The Sachs form factors calculated above can be related to phe-
nomenological observables such as the helicity amplitudes and the 
decay width. The relation between the Sachs form factors extracted 
in this work and the standard definitions of electromagnetic tran-
sition amplitudes f M1 and f E2 in the rest frame of �∗

c are given 
by [39,40]

f M1(q
2) =

√
4πα

2m

( |q|m∗
m

)1/2 G M1(q2)

[1 − q2/(m + m∗)2]1/2
, (28)

f E2(q
2) =

√
4πα

2m

( |q|m∗
m

)1/2 G E2(q2)

[1 − q2/(m + m∗)2]1/2
, (29)

where α = 1/137 is the fine structure constant. The helicity am-
plitudes A1/2 and A3/2 can be deduced from the transition ampli-
tudes as follows:

A1/2(q
2) = −1/2[ f M1(q

2) + 3 f E2(q
2)], (30)
A3/2(q
2) = −√

3/2[ f M1(q
2) − f E2(q

2)]. (31)

Then the decay width is given by [1]

� = m∗m

8π

(
1 − m2

m2∗

)2

{|A1/2(0)|2 + |A3/2(0)|2}, (32)

where we have used the constraint q = (m2∗ − m2)/2m∗ at q2 = 0. 
The decay width can also be obtained from the Sachs form factors:

� = α

16

(m2∗ − m2)3

m2m3∗
{3|G E2(0)|2 + |G M1(0)|2}. (33)

Since the above formulas are continuum relations, we use the 
experimental values of �c and �∗

c masses in calculating the he-
licity amplitudes and the decay width. Our numerical results for 
the helicity amplitudes in the rest frame of �∗

c and the decay 
width, at finite and zero momentum transfer, are reported in Ta-
ble 4. A comparison to the Nγ → � transition [1] reveals that, 
the helicity amplitudes are suppressed roughly by five orders of 
magnitude due to diminishing contribution of the heavy quark, 
the overall reduction in the transition form factors and the larger 
baryon masses.

Since no strong decay channel is kinematically allowed, the 
total decay rate of �∗

c is almost entirely in terms of the pho-
ton decay mode. Eventually a significantly suppressed value of the 
�∗

c -baryon decay width is yielded, making �∗
c one of the longest 

living spin-3/2 charmed hadrons. The suppression in the decay 
width can be mainly attributed to the small �∗

c -�c mass split-
ting. The decay width in Table 4 is translated into a lifetime of 
τ = 1/� = 8.901(913) × 10−18 sec.

The electromagnetic transitions of charmed baryons have also 
been studied within heavy hadron chiral perturbation theory [16,
17] and quark models [19–21]. It has been found that the charmed 
baryon electromagnetic decays are suppressed, in qualitative agree-
ment with our result. Of special interest is the �∗,+

c → �+
c γ decay 

having a similarly small width in the quark model [21]. An en-
hanced width is foreseen in the �∗+

c → �+
c γ decay, which would 

be interesting to study on the lattice. The literature on �cγ → �∗
c

transition is limited. Non-relativistic quark model prediction for 
�∗

c decay width [19] is one order of magnitude larger than what 
we have calculated in this work. Note that given the small �∗

c -�c

mass splitting, such a large width would require a G M1 value as 
large as that of Nγ → � transition. This cannot be justified as we 
have found that the heavy-quark contribution diminishes and there 
is no indication that the light quark contribution is enhanced.

In conclusion, we have computed the �cγ → �∗
c transition in 

lattice QCD. The dominant contribution is due to the magnetic 
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dipole form factor, which we have calculated with a statistical pre-
cision of about 5%. The electric quadrupole transition has been 
found to be negligibly small in consistency with the quark model. 
We have extracted the helicity amplitudes and the decay width, 
which have been found to be suppressed. This transition is of par-
ticular interest because of its relevance to current and proposed 
experimental facilities such as LHCb, PANDA, Belle II, BESIII and J-
PARC, which are expected to measure the electromagnetic decay 
widths of charmed baryons with a higher precision.
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