7 research outputs found

    Population dynamics and seasonal trend of California red scale (Aonidiella aurantii Maskell) in citrus in Northern Spain

    Get PDF
    The California red scale, Aonidiella aurantii (Maskell), was first detected in citrus groves in Catalonia, Northern Spain, in 2000, and has since spread slowly and irregularly. New foci of infestation are currently found in citrus-growing areas of southern Tarragona. As Catalonia is the northernmost citrus growing area in Spain, between 2002 and 2009, A. aurantii population dynamics and seasonal trends were studied in two citrus groves and compared with other regions and countries. The population dynamics showed that there were four male flights (including that of the overwintering generation): in May, mid June-mid July, August and October, the most abundant being that of August (over 60% of the males captured during the year). The thermal constant estimated between male flights, using 11.7°C as the lower threshold temperature, was 611.8 ± 35.5 degree-days. Three peaks of 1st and 2nd nymph instars were observed: in early June, late July-early August, and late September. The number of crawlers captured on sticky tapes reached a first maximum on 27th May (± 1.85 days). The male flight abundance showed a positive relationship between two consecutive generations, revealing the stability of A. aurantii populations.info:eu-repo/semantics/publishedVersio

    Tendencias estacionales y anuales en las poblaciones de campo de la mosca mediterránea de la fruta, Ceratitis capitata, en cítricos del Mediterráneo: comparación de dos áreas geográficas en el este de España

    Get PDF
    [EN] Seasonal and annual trends in Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) populations were analyzed to determine the factors that influence population fluctuations in the field. Adult flies were monitored along 2003-07 in two citrus areas in eastern Spain with similar climate, Valencia and Tarragona. Adults were present throughout the study period, even in winter. The initial annual population increase was related to previous winter and spring temperatures. Captures started to increase in April-May and usually reached a peak in July. This peak corresponded to the maximum capture period in Valencia, but not in Tarragona, where there was usually a second peak in autumn, with capture levels similar to the first peak. Gravid females were found throughout the year, even in overwintering populations of medfly. The availability of other host fruit species in the vicinity of the citrus groves may explain the differences in annual abundance and distribution of captures between the two areas studied.[ES] Se analizó la evolución estacional de las poblaciones de Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) para determinar los factores que influencian sus fluctuaciones poblacionales en campo. Se muestreó la población de adultos entre 2003 y 2007 en dos áreas citrícolas del este de España con clima similar, Valencia y Tarragona. Se encontraron adultos a lo largo de todo el periodo de estudio, incluso en invierno. El primer incremento anual de la población estuvo relacionado con las temperaturas previas del invierno y la primavera. Las capturas comenzaron a incrementarse en abril-mayo y generalmente alcanzaron un máximo en julio. Este máximo correspondió al máximo periodo de capturas en Valencia, pero no en Tarragona, donde hubo generalmente un segundo máximo en otoño, con niveles de captura similares al primer máximo. Se encontraron hembras grávidas a lo largo de todo el año, incluso en las poblaciones invernantes de mosca de la fruta. La disponibilidad de otras especies de frutales hospedantes cercanas a las parcelas de cítricos puede explicar las diferencias en abundancia anual y distribución estacional de capturas entre las dos áreas estudiadas.We would like to thank Rafel Monfort for his help with the field work. This research was funded by a project from the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), of Spain’s Ministerio de Educación y Ciencia (Project RTA03- 103-C6). We thank also Alejandro Tena for useful comments on early drafts of the manuscript.Martinez-Ferrer, MT.; Navarro Campos, C.; Campos Rivela, JM.; Marzal Moreno, C.; Fibla, JM.; Bargues Desolmes, L.; García Mari, F. (2010). Seasonal and annual trends in field populations of Mediterranean fruit fly, Ceratitis capitata, in Mediterranean citrus groves: comparison of two geographic areas in eastern Spain. Spanish Journal of Agricultural Research. 8(3):757-765. https://doi.org/10.5424/sjar/2010083-1275S7577658

    Deployment of mating disruption dispensers before and after first seasonal male flights for the control of Aonidiella aurantii in citrus

    Full text link
    The rejection of citrus fruit caused by infestations of the California red scale (CRS), Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae), raises concerns about its management. This fact has led to the introduction of new integrated control methods in citrus orchards, including the implementation of techniques based on pheromones. Previous works described efficient mating disruption pheromone dispensers to control A. aurantii in the Mediterranean region. The main aims of the present study were to adjust the timing of dispenser applications and study the importance of controlling the early first generation of A. aurantii by testing two different application dates: before and after the first CRS male flight. The efficacy of the different mating disruption strategies was tested during 2010 in an experimental orchard and these results were confirmed during 2011 in a commercial citrus farm. Results showed that every mating disruption strategy achieved significantly lower male captures in monitoring pheromone traps compared with untreated plots, as well as mean fruit infestation reductions of about 80 %. The control of the first CRS generation is not essential for achieving a good efficacy as demonstrated in two locations with different pest pressure. The late application of MD dispensers before the second CRS male flight has proven to be effective, suggesting a new advantageous way to apply mating disruption.The authors want to thank Fernando Alfaro from Denia, Antonio Caballero, and Javier Macias from Rio Tinto Fruit S.A. (Huelva, Spain) for field support. We also thank Ecologia y Proteccion Agricola SL for the pheromone supply. This work has been funded by the Spanish Ministry of Science and Innovation (project AGL2009-10725) and Agroalimed Foundation. The translation of this paper was funded by the Universidad Politecnica de Valencia (Spain).Vacas González, S.; Alfaro Cañamás, C.; Primo Millo, J.; Navarro-Llopis, V. (2015). Deployment of mating disruption dispensers before and after first seasonal male flights for the control of Aonidiella aurantii in citrus. Journal of Pest Science. 88(2):321-329. https://doi.org/10.1007/s10340-014-0623-1S321329882Avidov Z, Balshin M, Gerson U (1970) Studies on Aphytis coheni, a parasite of the California red scale, Aonidiella aurantii in Israel. Biocontrol 15:191–207Barzakay I, Hefetz A, Sternlicht M, Peleg BA, Gokkes M, Singer G, Geffen D, Kronenberg S (1986) Further field trials on management of the California red scale, Aonidiella aurantii, by mating disruption with its sex-pheromone. Phytoparasitica 14:160–161Bedford ECG (1996) Problems which we face in bringing red scale, Aonidiella aurantii (Maskell), under biological control in citrus in South Africa. Proc Int Soc Citriculture 1:485–492Campos-Rivela JM, Martínez-Ferrer MT, Fibla-Queralt JM (2012) Population dynamics and seasonal trend of California red scale (Aonidiella aurantii Maskell) in citrus in Northern Spain. Span J Agric Res 10:198–208Collins PJ, Lambkin TM, Bodnaruk P (1994) Suspected resistance to methidation in Aonidiella aurantii (Maskell) (Homoptera: diaspididae) from Queensland. J Aust Entomol Soc 33:325–326Corma A, Muñoz-Pallares J, Primo-Yufera E (1999) Production of semiochemical emitters having a controlled emission speed which are based on inorganic molecular sieves. World Patent WO9944420Corma A, Muñoz-Pallares J, Primo-Yufera E (2000) Emitter of semiochemical substances supported on a sepiolite, preparation process and applications. World Patent WO0002448DeBach P (1959) New species and strains of Aphytis (Hymenoptera: Eulophidae) parasitic on the California red scale, Aonidiella aurantii (Mask.), in the Orient. Ann Entomol Soc Am 52:354–362DeBach P, Argyriou L (1967) The colonization and success in Greece of some imported Aphytis spp. (Hymenoptera: Aphelinidae) parasitic on citrus scale insects (Homoptera: Diaspididae). Biocontrol 12:325–342Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Ann Rev Entomol 52:81–106Diari Oficial de la Comunitat Valenciana (DOCV) (2008) DOCV no. 5901, 26. Resolution 27 October 2008 of Consellería de Agricultura, Pesca y Alimentación; November 2008. http://www.docv.gva.es/datos/2008/11/26/pdf/2008_13692.pdfDomínguez-Ruiz J, Sanchis J, Navarro-Llopis V, Primo J (2008) A new long-life trimedlure dispenser for Mediterranean fruit fly. J Econ Entomol 101:1325–1330Eliahu M, Blumberg D, Horowitz AR, Ishaaya I (2007) Effect of pyriproxyfen on developing stages and embryogenesis of California red scale (CRS), Aonidiella aurantii. Pest Manag Sci 63:743–746Furness G, Buchanan G, George R, Richardson N (1983) A history of the biological and integrated control of red scale, Aonidiella aurantii on citrus in the lower Murray Valley of Australia. Biocontrol 28:99–212Grafton-Cardwell EE, Gu P (2003) Conserving vedalia beetle, Rodolia cardinalis (Mulsant) (Coleoptera : Coccinellidae), in citrus: a continuing challenge as new insecticides gain registration. J Econ Entomol 96:1388–1398Grafton-Cardwell EE, Reagan CA (1995) Selective use of insecticides for control of armored scale (Homoptera: Diaspididae) in San-Joaquin Valley California citrus. J Econ Entomol 88:1717–1725Grafton-Cardwell EE, Vehrs SLC (1995) Monitoring for organophosphate-resistant and carbamate-resistant armored scale (Homoptera: Diaspididae) in San-Joaquin Valley citrus. J Econ Entomol 88:495–504Grafton-Cardwell EE, Lee JE, Stewart JR, Olsen KD (2006) Role of two insect growth regulators in integrated pest management of citrus scales. J Econ Entomol 99:733–744Grout TG, Richards GI (1991a) Effect of buprofezin applications at different phenological times on California red scale (Homoptera: Diaspididae). J Econ Entomol 84:1802–1805Grout TG, Richards GI (1991b) Value of pheromone traps for predicting infestations of red scale, Aonidiella aurantii (Maskell) (Homoptera: Diaspididae), limited by natural enemy activity and insecticides used to control citrus thrips, Scirtothrips aurantii Faure (Thysanoptera: Thripidae). J Appl Entomol 111:20–27Grout TG, Du Toit WJ, Hofmeyr JH, Richards GI (1989) California red scale (Homoptera: Diaspididae) phenology on citrus in South Africa. J Econ Entomol 82:793–798Hefetz A, Kronengerg S, Peleg BA, Bar-zakay I (1988) Mating disruption of the California red scale Aonidiella aurantii (Homoptera: Diaspididae). In: Proceeding 6th International Citrus Congress, Tel Aviv (Israel), pp 1121–1127Hernández-Penadés P, Rodríguez-Reina JM, García-Marí F (2002) Umbrales de tratamiento para cóccidos diaspídidos en cítricos. Bol San Veg Plagas 28:469–478Hothorn T, Bretz F, Westfall P (2008) Simultaneous Inference in General Parametric Models. Biometrical J 50:346–363Ioratti C, Anfora G, Tasin M, De Cristofaro A, Witzgall P, Lucchi A (2011) Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J Econ Entomol 104:1125–1137Kehat M, Anshelevich L, Harel M, Dunkelblum E (1995) Control of the codling moth (Cydia pomonella) in apple and pear orchards in Israel by mating disruption. Phytoparasitica 23:285–296Kennett CE, Hoffmann RW (1985) Seasonal development of the California red scale (Homoptera: Diaspididae) in San Joaquin Valley citrus based on degree-day accumulation. J Econ Entomol 78:73–79Levitin E, Cohen E (1998) The involvement of acetylcholinesterase in resistance of the California red scale shape Aonidiella aurantii to organophosphorus pesticides. Entomol Exp Appl 88:115–121Lykouressis D, Perdikis D, Samartzis D, Fantinou A, Toutouzas S (2005) Management of the pink bollworm Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) by mating disruption in cotton fields. Crop Prot 24:177–183McLaren IW, Buchanan GA (1973) Parasitism by Aphytis chrysomphali Mercet and A. melinus Debach of Californian red scale, Aonidiella aurantii (Maskell), in relation to seasonal availability of suitable stages of the scale. Austr J Zool 21:111–117Moreno DS, Kennett CE (1985) Predictive year-end California red scale (Homoptera: Diaspididae) orange fruit infestations based on catches of males in the San-Joaquin Valley. J Econ Entomol 78:1–9Moreno DS, Luck RF (1992) Augmentative releases of Aphytis melinus (Hymenoptera: Aphelinidae) to suppress California red scale (Homoptera: Diaspididae) in southern California lemon orchards. J Econ Entomol 85:1112–1119Pekas A, Aguilar A, Tena A, García-Marí F (2010) Influence of host size on parasitism by Aphytis chrysomphali and A. melinus (Hymenoptera: Aphelinidae) in Mediterranean populations of California red scale Aonidiella aurantii (Hemiptera: Diaspididae). Biol Control 55:132–140Rill S, Grafton-Cardwell EE, Morse JG (2007) Effects of pyriproxyfen on California red scale (Hemiptera: Diaspididae) development and reproduction. J Econ Entomol 100:1435–1443Rodrigo E, Troncho P, García-Marí F (1996) Parasitoids (Hymenoptera: Aphelinidae) of three scale insects (Homoptera: Diaspididae) in a citrus grove in Valencia, Spain. Entomophaga 41:77–94Roelofs WL, Gieselmann MJ, Cardé AM, Tashiro H, Moreno DS, Henrick CA, Anderson RJ (1977) Sex-pheromone of California red scale, Aonidiella aurantii. Nature 26:698–699Rongai D, Cerato C, Lazzeri L, Palmieri S, Patalano G (2008) Vegetable oil formulation as biopesticide to control California red scale (Aonidiella aurantii Maskell). J Pest Sci 81:179–185Sorribas JJ, Rodríguez R, Rodrigo E, García-Marí F (2008) Niveles de parasitismo y especies de parasitoides del piojo rojo de california Aonidiella aurantii (Hemiptera: Diaspididae) en cítricos de la Comunidad Valenciana. Bol San Veg Plagas 34:201–210Sorribas J, van Baaren J, Garcia-Marí F (2012) Effects of climate on the introduction, distribution and biotic potential of parasitoids: applications to biological control of California red scale. Biol Control 62:103–112Staten RT, Flint HM, Weddle RC, Quintero E, Zarate RE, Finell CM, Hernandes M, Yamamoto A (1987) Pink bollworm (Lepidoptera: Gelechiidae): large-scale field trials with a high-rate gossyplure formulation. J Econ Entomol 80:1267–1271Tashiro H, Chambers DL (1967) Reproduction in the California Red Scale, Aonidiella aurantii (Homoptera: Diaspididae). I. Discovery and extraction of a female sex pheromone. Ann Entomol Soc Am 60:1166–1170Tena A, Llácer E, Urbaneja A (2013) Biological control of a non-honeydew producer mediated by a distinct hierarchy of honeydew quality. Biol Control 67:117–122University of California (1991) Integrated pest management for citrus. University of California, BerkeleyVacas S, Alfaro C, Navarro-Llopis V, Primo J (2009) The first account of the mating disruption technique for the control of California red scale Aonidiella aurantii Maskell (Homoptera: Diaspididae) using new biodegradable dispensers. Bull Entomol Res 99:415–423Vacas S, Alfaro C, Navarro-Llopis V, Primo J (2010) Mating disruption of California red scale, Aonidiella aurantii Maskell (Homoptera: Diaspididae), using biodegradable mesoporous pheromone dispensers. Pest Manag Sci 66:745–751Vacas S, Vanaclocha P, Alfaro C, Primo J, Verdú MJ, Urbaneja A, Navarro-Llopis V (2011) Mating disruption for the control of Aonidiella aurantii Maskell (Hemiptera: Diaspididae) may contribute to increased effectiveness of natural enemies. Pest Manag Sci 68:142–148Vanaclocha P, Vacas S, Alfaro C, Primo J, Verdú MJ, Navarro-Llopis V, Urbaneja A (2012) Life history parameters and scale-cover surface area of Aonidiella aurantii are altered in a mating disruption environment: implications for biological control. Pest Manag Sci 68:1092–1097Vanaclocha P, Vidal-Quist C, Oheix S, Montón H, Planes L, Catalán J, Tena A, Verdú MJ, Urbaneja A (2013) Acute toxicity in laboratory tests of fresh and aged residues of pesticides used in citrus on the parasitoid Aphytis melinus. J Pest Sci 86:329–336Yarom I, Blumberg D, Ishaaya I (1988) Effects of buprofezin on California red scale (Homoptera: Diaspididae) and Mediterranean black scale (Homoptera: Coccidae). J Econ Entomol 81:1581–1585Yust HR, Nelson HD, Busbey RL (1943) Comparative susceptibility of two strains of California red scale to HCN, with special reference to the inheritance of resistance. J Econ Entomol 36:744–74

    Dinámica poblacional y estacional del piojo rojo de California (Aonidiella aurantii Maskell) en cítricos del norte de España

    Get PDF
    The California red scale, Aonidiella aurantii (Maskell), was detected in citrus in Catalonia, Northern Spain, in 2000, and has since spread slowly and irregularly southwards, with foci of infestation currently found in southern Tarragona citrus-growing areas. Since Catalonia is the northern citrus growing area in Spain, between 2002 and 2009, the A. aurantii biological cycle (male flights and seasonal history) was studied in two citrus groves and compared with other regions and countries. Population dynamics showed that 4 male flights occur (including that of the overwintering generation) in May, mid June-mid July, August and in October, the most abundant being in August (over 60% of males captured throughout the year). The thermal constant estimated between male flights, using 11.7 ºC as the lower threshold temperature, was 611.8 ± 35.5 DD. Three peaks of sensitive instar were also observed, in early June, late July-early August, and late September. The number of crawlers captured reached a maximum on 27 May (± 1.85 days), 24.8 ± 2.5 days (184.2 ± 18.1 DD) after the first male flight. The male flight abundance showed there was a relationship only between two consecutive generations, revealing the rapid shifts in population abundance. We estimated when the first sensitive instar peak occurred through a non-destructive method, based on the peak of males captured during the first flight.El piojo rojo de California, Aonidiella aurantii (Maskell), fue detectado en el año 2000 en Cataluña, y desde entonces hasta la actualidad esta plaga ha experimentado una lenta e irregular expansión; actualmente se pueden encontrar focos de infestación de la plaga en todas las áreas de cultivo citrícolas del sur de Tarragona. En la zona citrícola de Cataluña, que es la más septentrional de España, desde 2002 a 2009, se llevaron a cabo estudios del ciclo biológico y vuelos de machos en dos fincas de cítricos para compararlos con otras regiones y países. De acuerdo con la dinámica poblacional observada, se produjeron cuatro vuelos de machos (incluyendo el de las poblaciones invernantes): en mayo, desde mediados de junio a mediados de julio, en agosto y durante octubre, siendo el tercero el más abundante, que representa alrededor del 60% del total de machos capturados. La constante térmica estimada entre dos vuelos consecutivos, empleando como umbral mínimo 11,7°C, fue de 611,8 ± 35,5 grados-día. Además se observaron tres máximos de ninfas de primera y segunda edad: a primeros de junio, entre finales de julio y primeros de agosto, y a finales de septiembre. El número de ninfas móviles de primera edad alcanzó un primer máximo el 27 de mayo (± 1,85 días). La abundancia de machos en los vuelos mostró una relación positiva entre vuelos consecutivos, mostrando la estabilidad de las poblaciones de A. aurantii

    Seasonal trends, sampling plans and parasitoid complex of the Chinese wax scale, Ceroplastes sinensis Del Guercio (Hemiptera: Coccidae), in Mediterranean citrus groves

    No full text
    Seasonal trends and the parasitoid complex of Chinese wax scale (Ceroplastes sinensis) was studied from July 2010 to February 2013. Six commercial citrus groves located in northeastern Spain were sampled fortnightly. Chinese wax scale completed a single annual generation. Egg oviposition started in May and continued until mid-July. Egg hatching began in mid-June, and in the first quarter of August, the maximum percentage of hatched eggs was reached. In the same groves, the parasitoid species of C. sinensis were determined together with their seasonal trends, relative abundance and occurrence on C. sinensis. Four hymenoptera were found parasitizing C. sinensis, mainly on third instars and females: Coccophagus ceroplastae (Aphelinidae), Metaphycus helvolus (Encyrtidae), Scutellista caerulea (Pteromalidae) and Aprostocetus ceroplastae (Eulophidae). The most abundant species was A. ceroplastae, corresponding to 54% of the parasitoids emerged. Coccophagus ceroplastae and M. helvolus represented 19%, whereas S. caerulea comprised 8% of the total. This study is the first published record of C. ceroplastae in Spain and the first record of M. helvolus on C. sinensis in Spain. Concerning the economical thresholds normally used, sampling plans developed for the management of C. sinensis in citrus groves should target population densities of around 12-20% of invaded twigs, equivalent to 0.2-0.5 females per twig. The sample size necessary to achieve the desired integrated pest management precision is 90-160 twigs per grove for the enumerative plan and about 160-245 twigs per grove for the binomial plan
    corecore