13,577 research outputs found

    Error Propagation in the Hypercycle

    Get PDF
    We study analytically the steady-state regime of a network of n error-prone self-replicating templates forming an asymmetric hypercycle and its error tail. We show that the existence of a master template with a higher non-catalyzed self-replicative productivity, a, than the error tail ensures the stability of chains in which m<n-1 templates coexist with the master species. The stability of these chains against the error tail is guaranteed for catalytic coupling strengths (K) of order of a. We find that the hypercycle becomes more stable than the chains only for K of order of a2. Furthermore, we show that the minimal replication accuracy per template needed to maintain the hypercycle, the so-called error threshold, vanishes like sqrt(n/K) for large K and n<=4

    Finding the Higgs Boson through Supersymmetry

    Get PDF
    The study of displaced vertices containing two b--jets may provide a double discovery at the Large Hadron Collider (LHC): we show how it may not only reveal evidence for supersymmetry, but also provide a way to uncover the Higgs boson necessary in the formulation of the electroweak theory in a large region of the parameter space. We quantify this explicitly using the simplest minimal supergravity model with bilinear breaking of R-parity, which accounts for the observed pattern of neutrino masses and mixings seen in neutrino oscillation experiments.Comment: 7 pages, 7 figures. Final version to appear at PRD. Discussion and results were enlarge

    Analysis of dependence among size, rate and duration in internet flows

    Get PDF
    In this paper we examine rigorously the evidence for dependence among data size, transfer rate and duration in Internet flows. We emphasize two statistical approaches for studying dependence, including Pearson's correlation coefficient and the extremal dependence analysis method. We apply these methods to large data sets of packet traces from three networks. Our major results show that Pearson's correlation coefficients between size and duration are much smaller than one might expect. We also find that correlation coefficients between size and rate are generally small and can be strongly affected by applying thresholds to size or duration. Based on Transmission Control Protocol connection startup mechanisms, we argue that thresholds on size should be more useful than thresholds on duration in the analysis of correlations. Using extremal dependence analysis, we draw a similar conclusion, finding remarkable independence for extremal values of size and rate.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS268 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Dynamics of radiating braneworlds

    Get PDF
    If the observable universe is a braneworld of Randall-Sundrum type, then particle interactions at high energies will produce 5-dimensional gravitons that escape into the bulk. As a result, the Weyl energy density on the brane does not behave like radiation in the early universe, but does so only later, in the low energy regime. Recently a simple model was proposed to describe this modification of the Randall-Sundrum cosmology. We investigate the dynamics of this model, and find the exact solution of the field equations. We use a dynamical systems approach to analyze global features of the phase space of solutions.Comment: error in figures corrected, reference adde

    Probing Neutrino Oscillations in Supersymmetric Models at the Large Hadron Collider

    Get PDF
    The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.Comment: 11 pages, 6 figures. To appear in Physical Review
    corecore