225 research outputs found

    Enhanced Anandamide Plasma Levels in Patients with Complex Regional Pain Syndrome following Traumatic Injury: A Preliminary Report

    Get PDF
    The complex regional pain syndrome (CRPS) is a disabling neuropathic pain condition that may develop following injuries of the extremities. The pathogenesis of this syndrome is not clear; however, it includes complex interactions between the nervous and the immune system resulting in chronic inflammation, pain and trophic changes. This interaction may be mediated by chronic stress which is thought to activate the endogenous cannabinoid (endocannabinoid) system (ECS). We conducted an open, prospective, comparative clinical study to determine plasma level of the endocannabinoid anandamide by high-performance liquid chromatography and a tandem mass spectrometry system in 10 patients with CRPS type I versus 10 age- and sex-matched healthy controls. As compared to healthy controls, CRPS patients showed significantly higher plasma concentrations of anandamide. These results indicate that the peripheral ECS is activated in CRPS. Further studies are warranted to evaluate the role of the ECS in the limitation of inflammation and pain. Copyright (C) 2009 S. Karger AG, Base

    Usefulness of Low-Dose Statin Plus Ezetimibe and/or Nutraceuticals in Patients With Coronary Artery Disease Intolerant to High-Dose Statin Treatment.

    Get PDF
    High-dose statin (HDS) therapy is recommended to reduce low-density lipoprotein cholesterol (LDL-C); however, some patients are unable to tolerate the associated side effects. Nutraceuticals have shown efficacy in lowering LDL-C. The aim of this study was to evaluate whether the combination of low-dose statin (LDS) plus ezetimibe (EZE) or LDS plus nutraceutical (Armolipid Plus [ALP] containing red yeast rice, policosanol, and berberine) can lead to a higher proportion of high-risk patients achieving target LDL-C. A secondary objective was to assess the efficacy of triple combination LDS + EZE + ALP in resistant patients (LDL-C >70 mg/dl). A randomized, prospective, parallel-group, single-blind study was conducted in patients with coronary artery disease (n = 100) who had undergone percutaneous coronary intervention in the preceding 12 months, were HDS-intolerant, and were not at LDL-C target (<70 mg/dl) with LDS alone. Patients received either LDS + EZE or LDS + ALP. Of the 100 patients, 33 patients (66%) treated with LDS + EZE and 31 patients (62%) treated with LDS + ALP achieved target LDL-C after 3 months, which was maintained at 6 months. Patients who did not achieve the therapeutic goal received a triple combination of LDS + EZE + ALP for a further 3 months. At 6 months, 28 of 36 patients (78%) achieved LDL-C target. Overall, 92% of patients enrolled in this study were at target LDL-C at 6 months. No patients in any group experienced major side effects. In conclusion, in HDS-intolerant coronary artery disease patients, the combination of LDS plus EZE and/or ALP represents a valuable therapeutic option allowing most patients to reach target LDL-C within 3 to 6 months

    Derivative based global sensitivity measures

    Full text link
    The method of derivative based global sensitivity measures (DGSM) has recently become popular among practitioners. It has a strong link with the Morris screening method and Sobol' sensitivity indices and has several advantages over them. DGSM are very easy to implement and evaluate numerically. The computational time required for numerical evaluation of DGSM is generally much lower than that for estimation of Sobol' sensitivity indices. This paper presents a survey of recent advances in DGSM concerning lower and upper bounds on the values of Sobol' total sensitivity indices S_itotS\_{i}^{tot}. Using these bounds it is possible in most cases to get a good practical estimation of the values of S_itotS\_{i}^{tot} . Several examples are used to illustrate an application of DGSM

    Prenatal stress induces a depressive-like phenotype in adolescent rats: The key role of TGF-β1 pathway

    Get PDF
    Stressful experiences early in life, especially in the prenatal period, can increase the risk to develop depression during adolescence. However, there may be important qualitative and quantitative differences in outcome of prenatal stress (PNS), where some individuals exposed to PNS are vulnerable and develop a depressive-like phenotype, while others appear to be resilient. PNS exposure, a well-established rat model of early life stress, is known to increase vulnerability to depression and a recent study demonstrated a strong interaction between transforming growth factor-β1 (TGF-β1) gene and PNS in the pathogenesis of depression. Moreover, it is well-known that the exposure to early life stress experiences induces brain oxidative damage by increasing nitric oxide levels and decreasing antioxidant factors. In the present work, we examined the role of TGF-β1 pathway in an animal model of adolescent depression induced by PNS obtained by exposing pregnant females to a stressful condition during the last week of gestation. We performed behavioral tests to identify vulnerable or resilient subjects in the obtained litters (postnatal day, PND &gt; 35) and we carried out molecular analyses on hippocampus, a brain area with a key role in the pathogenesis of depression. We found that female, but not male, PNS adolescent rats exhibited a depressive-like behavior in forced swim test (FST), whereas both male and female PNS rats showed a deficit of recognition memory as assessed by novel object recognition test (NOR). Interestingly, we found an increased expression of type 2 TGF-β1 receptor (TGFβ-R2) in the hippocampus of both male and female resilient PNS rats, with higher plasma TGF-β1 levels in male, but not in female, PNS rats. Furthermore, PNS induced the activation of oxidative stress pathways by increasing inducible nitric oxide synthase (iNOS), NADPH oxidase 1 (NOX1) and NOX2 levels in the hippocampus of both male and female PNS adolescent rats. Our data suggest that high levels of TGF-β1 and its receptor TGFβ-R2 can significantly increase the resiliency of adolescent rats to PNS, suggesting that TGF-β1 pathway might represent a novel pharmacological target to prevent adolescent depression in rats

    Derivative based global sensitivity measures

    Get PDF
    International audienceThe method of derivative based global sensitivity measures (DGSM) has recently become popular among practitioners. It has a strong link with the Morris screening method and Sobol' sensitivity indices and has several advantages over them. DGSM are very easy to implement and evaluate numerically. The computational time required for numerical evaluation of DGSM is generally much lower than that for estimation of Sobol' sensitivity indices. This paper presents a survey of recent advances in DGSM concerning lower and upper bounds on the values of Sobol' total sensitivity indices SitotS_{i}^{tot}. Using these bounds it is possible in most cases to get a good practical estimation of the values of SitotS_{i}^{tot} . Several examples are used to illustrate an application of DGSM

    Design of Experiments for Screening

    Full text link
    The aim of this paper is to review methods of designing screening experiments, ranging from designs originally developed for physical experiments to those especially tailored to experiments on numerical models. The strengths and weaknesses of the various designs for screening variables in numerical models are discussed. First, classes of factorial designs for experiments to estimate main effects and interactions through a linear statistical model are described, specifically regular and nonregular fractional factorial designs, supersaturated designs and systematic fractional replicate designs. Generic issues of aliasing, bias and cancellation of factorial effects are discussed. Second, group screening experiments are considered including factorial group screening and sequential bifurcation. Third, random sampling plans are discussed including Latin hypercube sampling and sampling plans to estimate elementary effects. Fourth, a variety of modelling methods commonly employed with screening designs are briefly described. Finally, a novel study demonstrates six screening methods on two frequently-used exemplars, and their performances are compared

    Developmental consequences of perinatal cannabis exposure: behavioral and neuroendocrine effects in adult rodents

    Get PDF
    Cannabis is the most commonly used illicit drug among pregnant women. Since the endocannabinoid system plays a crucial role in brain development, maternal exposure to cannabis derivatives might result in long-lasting neurobehavioral abnormalities in the exposed offspring. It is difficult to detect these effects, and their underlying neurobiological mechanisms, in clinical cohorts, because of their intrinsic methodological and interpretative issues. The present paper reviews relevant rodent studies examining the long-term behavioral consequences of exposure to cannabinoid compounds during pregnancy and/or lactation. Maternal exposure to even low doses of cannabinoid compounds results in atypical locomotor activity, cognitive impairments, altered emotional behavior, and enhanced sensitivity to drugs of abuse in the adult rodent offspring. Some of the observed behavioral abnormalities might be related to alterations in stress hormone levels induced by maternal cannabis exposure. There is increasing evidence from animal studies showing that cannabinoid drugs are neuroteratogens which induce enduring neurobehavioral abnormalities in the exposed offspring. Several preclinical findings reviewed in this paper are in line with clinical studies reporting hyperactivity, cognitive impairments and altered emotionality in humans exposed in utero to cannabis. Conversely, genetic, environmental and social factors could also influence the neurobiological effects of early cannabis exposure in humans

    Differences in Spontaneously Avoiding or Approaching Mice Reflect Differences in CB1-Mediated Signaling of Dorsal Striatal Transmission

    Get PDF
    Approach or avoidance behaviors are accompanied by perceptual vigilance for, affective reactivity to and behavioral predisposition towards rewarding or punitive stimuli, respectively. We detected three subpopulations of C57BL/6J mice that responded with avoiding, balancing or approaching behaviors not induced by any experimental manipulation but spontaneously displayed in an approach/avoidance conflict task. Although the detailed neuronal mechanisms underlying the balancing between approach and avoidance are not fully clarified, there is growing evidence that endocannabinoid system (ECS) plays a critical role in the control of these balancing actions. The sensitivity of dorsal striatal synapses to the activation of cannabinoid CB1 receptors was investigated in the subpopulations of spontaneously avoiding, balancing or approaching mice. Avoiding animals displayed decreased control of CB1 receptors on GABAergic striatal transmission and in parallel increase of behavioral inhibition. Conversely, approaching animals exhibited increased control of CB1 receptors and in parallel increase of explorative behavior. Balancing animals reacted with balanced responses between approach and avoidance patterns. Treating avoiding animals with URB597 (fatty acid amide hydrolase inhibitor) or approaching animals with AM251 (CB1 receptor inverse agonist) reverted their respective behavioral and electrophysiological patterns. Therefore, enhanced or reduced CB1-mediated control on dorsal striatal transmission represents the synaptic hallmark of the approach or avoidance behavior, respectively. Thus, the opposite spontaneous responses to conflicting stimuli are modulated by a different involvement of endocannabinoid signaling of dorsal striatal neurons in the range of temperamental traits related to individual differences
    corecore