222 research outputs found

    A Proof of Concept of the Role of TDM-Based Clinical Pharmacological Advices in Optimizing Antimicrobial Therapy on Real-Time in Different Paediatric Settings

    Get PDF
    Introduction: Antimicrobial treatment is quite common among hospitalized children. The dynamic age-associated physiological variations coupled with the pathophysiological alterations caused by underlying illness and potential drug-drug interactions makes the implementation of appropriate antimicrobial dosing extremely challenging among paediatrics. Therapeutic drug monitoring (TDM) may represent a valuable tool for assisting clinicians in optimizing antimicrobial exposure. Clinical pharmacological advice (CPA) is an approach based on the correct interpretation of the TDM result by the MD Clinical Pharmacologist in relation to specific underlying conditions, namely the antimicrobial susceptibility of the clinical isolate, the site of infection, the pathophysiological characteristics of the patient and/or the drug-drug interactions of cotreatments. The aim of this study was to assess the role of TDM-based CPAs in providing useful recommendations for the real-time personalization of antimicrobial dosing regimens in various paediatric settings. Materials and methods: Paediatric patients who were admitted to different settings of the IRCCS Azienda Ospedaliero-Universitaria of Bologna, Italy (paediatric intensive care unit [ICU], paediatric onco-haematology, neonatology, and emergency paediatric ward), between January 2021 and June 2021 and who received TDM-based CPAs on real-time for personalization of antimicrobial therapy were retrospectively assessed. Demographic and clinical features, CPAs delivered in relation to different settings and antimicrobials, and type of dosing adjustments were extracted. Two indicators of performance were identified. The number of dosing adjustments provided over the total number of delivered CPAs. The turnaround time (TAT) of CPAs according to a predefined scale (optimal, <12 h; quasi-optimal, between 12–24 h; acceptable, between 24–48 h; suboptimal, >48 h). Results: Overall, 247 CPAs were delivered to 53 paediatric patients (mean 4.7 ± 3.7 CPAs/patient). Most were delivered to onco-haematological patients (39.6%) and to ICU patients (35.8%), and concerned mainly isavuconazole (19.0%) and voriconazole (17.8%). Overall, CPAs suggested dosing adjustments in 37.7% of cases (24.3% increases and 13.4% decreases). Median TAT was 7.5 h (IQR 6.1–8.8 h). Overall, CPAs TAT was optimal in 91.5% of cases, and suboptimal in only 0.8% of cases. Discussion: Our study provides a proof of concept of the helpful role that TDM-based real-time CPAs may have in optimizing antimicrobial exposure in different challenging paediatric scenarios

    Unusual source of tachycardia in an adolescent

    Get PDF
    Mahaim fiber tachycardia is an uncommon cause of palpitations among the pediatric population. This case report describes an adolescent female who presented with recurrent episodes of tachycardia with chest pain and dizziness. Her ECG showed tachycardia with wide QRS complexes and left bundle branch block pattern. Repeat ECG after adenosine treatment revealed sinus rhythm with persistence of the left bundle branch block pattern. Metoprolol was started however she continued to have episodes of sustained tachycardia

    Evolutionary relationships among barley and <i>Arabidopsis</i> core circadian clock and clock-associated genes

    Get PDF
    The circadian clock regulates a multitude of plant developmental and metabolic processes. In crop species, it contributes significantly to plant performance and productivity and to the adaptation and geographical range over which crops can be grown. To understand the clock in barley and how it relates to the components in the Arabidopsis thaliana clock, we have performed a systematic analysis of core circadian clock and clock-associated genes in barley, Arabidopsis and another eight species including tomato, potato, a range of monocotyledonous species and the moss, Physcomitrella patens. We have identified orthologues and paralogues of Arabidopsis genes which are conserved in all species, monocot/dicot differences, species-specific differences and variation in gene copy number (e.g. gene duplications among the various species). We propose that the common ancestor of barley and Arabidopsis had two-thirds of the key clock components identified in Arabidopsis prior to the separation of the monocot/dicot groups. After this separation, multiple independent gene duplication events took place in both monocot and dicot ancestors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00239-015-9665-0) contains supplementary material, which is available to authorized users

    Risk factors associated with bacteremia in COVID-19 patients admitted to intensive care unit: a retrospective multicenter cohort study

    Get PDF
    Purpose: This&nbsp;multicenter observational study was done to evaluate risk factors related to the development of BSI in patients admitted to ICU for COVID-19. Methods: All patients with COVID-19 admitted&nbsp;in two COVID-19 dedicated ICUs in two different hospital&nbsp;between 02–2020 and 02–2021 were recruited. Result: 537 patients were included of whom 265 (49.3%) experienced at least one BSI. Patients who developed bacteremia had a higher SOFA score [10 (8–12) vs 9 (7–10), p &lt; 0.001], had been intubated more frequently [95.8% vs 75%, p &lt; 0.001] and for a median longer time [16&nbsp;days (9–25) vs 8&nbsp;days (5–14), p &lt; 0.001]. Patients with BSI had a median longer ICU stay [18&nbsp;days (12–31.5) vs 9&nbsp;days (5–15), p &lt; 0.001] and higher mortality [54% vs 42.3%, p &lt; 0.001] than those who did not develop it. Development of BSI resulted in a higher SOFA score [aHR&nbsp;1.08 (95% CI 1.03–1.12)] and a higher Charlson score [csAHR 1.15&nbsp;(95% CI 1.05–1.25)]. Conclusion: A high SOFA score and a high Charlson score resulted associated with BSI’s development. Conversely, immunosuppressive therapy like steroids and tocilizumab, has no role in increasing the risk of bacteremia

    Dawn and Dusk Set States of the Circadian Oscillator in Sprouting Barley (Hordeum vulgare) Seedlings

    Get PDF
    The plant circadian clock is an internal timekeeper that coordinates biological processes with daily changes in the external environment. The transcript levels of clock genes, which oscillate to control circadian outputs, were examined during early seedling development in barley (Hordeum vulgare), a model for temperate cereal crops. Oscillations of clock gene transcript levels do not occur in barley seedlings grown in darkness or constant light but were observed with day-night cycles. A dark-to-light transition influenced transcript levels of some clock genes but triggered only weak oscillations of gene expression, whereas a light-to-dark transition triggered robust oscillations. Single light pulses of 6, 12 or 18 hours induced robust oscillations. The light-to-dark transition was the primary determinant of the timing of subsequent peaks of clock gene expression. After the light-to-dark transition the timing of peak transcript levels of clock gene also varied depending on the length of the preceding light pulse. Thus, a single photoperiod can trigger initiation of photoperiod-dependent circadian rhythms in barley seedlings. Photoperiod-specific rhythms of clock gene expression were observed in two week old barley plants. Changing the timing of dusk altered clock gene expression patterns within a single day, showing that alteration of circadian oscillator behaviour is amongst the most rapid molecular responses to changing photoperiod in barley. A barley EARLY FLOWERING3 mutant, which exhibits rapid photoperiod–insensitive flowering behaviour, does not establish clock rhythms in response to a single photoperiod. The data presented show that dawn and dusk cues are important signals for setting the state of the circadian oscillator during early development of barley and that the circadian oscillator of barley exhibits photoperiod-dependent oscillation states

    Testing the theory of immune selection in cancers that break the rules of transplantation

    Get PDF
    Modification of cancer cells likely to reduce their immunogenicity, including loss or down-regulation of MHC molecules, is now well documented and has become the main support for the concept of immune surveillance. The evidence that these modifications, in fact, result from selection by the immune system is less clear, since the possibility that they may result from reorganized metabolism associated with proliferation or from cell de-differentiation remains. Here, we (a) survey old and new transplantation experiments that test the possibility of selection and (b) survey how transmissible tumours of dogs and Tasmanian devils provide naturally evolved tests of immune surveillance

    EBP1 and DRBP76/NF90 binding proteins are included in the major histocompatibility complex class II RNA operon

    Get PDF
    Major histocompatibility complex class II mRNAs encode heterodimeric proteins involved in the presentation of exogenous antigens during an immune response. Their 3′UTRs bind a protein complex in which we identified two factors: EBP1, an ErbB3 receptor-binding protein and DRBP76, a double-stranded RNA binding nuclear protein, also known as nuclear factor 90 (NF90). Both are well-characterized regulatory factors of several mRNA molecules processing. Using either EBP1 or DRBP76/NF90-specific knockdown experiments, we established that the two proteins play a role in regulating the expression of HLA-DRA, HLA-DRB1 and HLA-DQA1 mRNAs levels. Our study represents the first indication of the existence of a functional unit that includes different transcripts involved in the adaptive immune response. We propose that the concept of ‘RNA operon’ may be suitable for our system in which MHCII mRNAs are modulated via interaction of their 3′UTR with same proteins
    corecore