222 research outputs found

    High-capacity watermarking of high dynamic range images

    Get PDF
    High dynamic range (HDR) imaging techniques address the need to capture the full range of color and light that the human eyes can perceive in the real world. HDR technology is becoming more and more pervasive. In fact, most of the cameras and smartphones available on the market are capable of capturing HDR images. Among the challenges posed by the spread of this new technology there is the increasing need to design proper techniques to protect the intellectual property of HDR digital media. In this paper, we speculate about the use of watermarking techniques to cope with the peculiarities of HDR media to prevent the misappropriation of HDR images

    CLOSED FORM OF THE STEERED ELONGATED HERMITE-GAUSS WAVELETS

    Get PDF
    We provide a closed form, both in the spatial and in the frequency domain, of a family of wavelets which arise from steering elongated Hermite-Gauss filters. These wavelets have interesting mathematical properties, as they form new dyadic families of eigenfunctions of the 2D Fourier transform, and generalize the well known Laguerre-Gauss harmonics. A special notation introduced here greatly simplifies our proof and unifies the cases of even and odd orders. Applying these wavelets to edge detection increases the performance of about 12.5% with respect to standard methods, in terms of the Pratt’s figure of merit, both for noisy and noise-free input images

    CLOSED FORM OF THE STEERED ELONGATED HERMITE-GAUSS WAVELETS

    Get PDF

    CLOSED FORM OF THE STEERED ELONGATED HERMITE-GAUSS WAVELETS

    Get PDF

    Steerable filtering using novel circular harmonic functions with application to edge detection

    Get PDF
    In this paper, we perform approximate steering of the elongated 2D Hermite-Gauss functions with respect to rotations and provide a compact analytical expressions for the related basis functions. A special notation introduced here considerably simplifies the derivation and unifies the cases of even and odd indices. The proposed filters are applied to edge detection. Quantitative analysis shows a performance increase of about 12.5% in terms of the Pratt’s figure of merit with respect to the well-established Gaussian gradient proposed earlier.

    Contour Detection by Surround Inhibition in the Circular Harmonic Functions Domain

    Get PDF

    Blind Image Deblurring Driven by Nonlinear Processing in the Edge Domain

    Get PDF
    This work addresses the problem of blind image deblurring, that is, of recovering an original image observed through one or more unknown linear channels and corrupted by additive noise. We resort to an iterative algorithm, belonging to the class of Bussgang algorithms, based on alternating a linear and a nonlinear image estimation stage. In detail, we investigate the design of a novel nonlinear processing acting on the Radon transform of the image edges. This choice is motivated by the fact that the Radon transform of the image edges well describes the structural image features and the effect of blur, thus simplifying the nonlinearity design. The effect of the nonlinear processing is to thin the blurred image edges and to drive the overall blind restoration algorithm to a sharp, focused image. The performance of the algorithm is assessed by experimental results pertaining to restoration of blurred natural images

    Lossless Image Compression and Selective Encryption Using a Discrete Radon Transform

    Get PDF
    International audienceIn this paper we propose a new joint encryption and loss- less compression technique designed for large images 1 . The proposed technique takes advantage of the Mojette transform properties, and can easily be included in a distributed storage architecture. The basic crypto-compression scheme presented is based on a cascade of Radon projection which enables fast encryption of a large amount of digital data. Standard encryp- tion techniques, such as AES, DES, 3DES, or IDEA can be applied to encrypt very small percentages of high resolution images. As the proposed scheme uses standard encryption, and only transmits uncorrelated data along with the encrypted part, this technique takes benefit of the security related to the chosen encryption standard, here, we assess its performances in terms of processing time and compression ratio

    CMA – a comprehensive Bioconductor package for supervised classification with high dimensional data

    Get PDF
    For the last eight years, microarray-based class prediction has been a major topic in statistics, bioinformatics and biomedicine research. Traditional methods often yield unsatisfactory results or may even be inapplicable in the p > n setting where the number of predictors by far exceeds the number of observations, hence the term “ill-posed-problem”. Careful model selection and evaluation satisfying accepted good-practice standards is a very complex task for inexperienced users with limited statistical background or for statisticians without experience in this area. The multiplicity of available methods for class prediction based on high-dimensional data is an additional practical challenge for inexperienced researchers. In this article, we introduce a new Bioconductor package called CMA (standing for “Classification for MicroArrays”) for automatically performing variable selection, parameter tuning, classifier construction, and unbiased evaluation of the constructed classifiers using a large number of usual methods. Without much time and effort, users are provided with an overview of the unbiased accuracy of most top-performing classifiers. Furthermore, the standardized evaluation framework underlying CMA can also be beneficial in statistical research for comparison purposes, for instance if a new classifier has to be compared to existing approaches. CMA is a user-friendly comprehensive package for classifier construction and evaluation implementing most usual approaches. It is freely available from the Bioconductor website at http://bioconductor.org/packages/2.3/bioc/html/CMA.html

    Contour Detection by Surround Inhibition in the Circular Harmonic Functions Domain

    Get PDF
    corecore