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Giuseppe Papari*, Patrizio Campisi**, Nicolai Petkov*
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** Dipartimento di Elettronica Applicata, Universita’ degli Studi Roma Tre, Roma, Italy

ABSTRACT

We provide a closed form, both in the spatial and in the frequency
domain, of a family of wavelets which arise from steering elongated
Hermite-Gauss filters. These wavelets have interesting mathemati-
cal properties, as they form new dyadic families of eigenfunctions of
the 2D Fourier transform, and generalize the well known Laguerre-
Gauss harmonics. A special notation introduced here greatly simpli-
fies our proof and unifies the cases of even and odd orders. Applying
these wavelets to edge detection increases the performance of about
12.5% with respect to standard methods, in terms of the Pratt’s figure
of merit, both for noisy and noise-free input images.

Index Terms— Edge features, Fourier analysis, Steerable filters

1. INTRODUCTION
The wavelet theory plays a central role in image processing [1]. An
important complete family of orthogonal wavelets is given by the
Hermite-Gauss filters (HGF) [2], which are very close to the optimal
for feature detection [3] and have interesting causality properties for
regularization in the scale-space [4, 5]. Moreover, these filters are
steerable [6], i.e., their rotated versions with every angle can be ex-
pressed as linear combinations of fixed bases. This makes them suit-
able to detect oriented features. These wavelets find many image
analysis applications, such as local features detection, texture mod-
eling, and astronomical image compression, just to cite a few.

An intrinsic limit of HGF, pointed out by Canny [3], is that
high noise rejection implies low localization accuracy and vice-
versa. Such a limit is outrun by considering elongated filters (Fig. 1)
which, however, are no longer steerable. A powerful framework to
design steerable approximations of a given profile, which is widely
applied in image processing, consists in expanding filters into se-
ries of orthogonal functions (single value decomposition [7, 8]).
However, closed forms of the resulting bases are hardly available.

In this paper, we derive the closed form of an important family
of filters that arise from steering elongated HGF, and we show some
interesting mathematical properties of them. A special notation in-
troduced here greatly simplifies our proof unifying the cases of even
and odd orders of the Hermite functions. We also show experimental
results related to the application of these wavelets to edge detection.

2. STEERING BASES OF THE ELONGATED HGF
In this section, we introduce the basis functions for steering the elon-
gated HGF Hm,n(x, y, λ). By definition, we have:

Hλ
m,n(x, y) � Hm(λx)Hn(λ−1y)e−

(λx)2+(λ−1y)2

2 (1)
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Fig. 1. From left to right: Non-elongated and elongated HGF of
order (1,0), a noisy edge and its convolution with these two filters.
Elongated filters have better localization for the same noise rejection.

Fig. 2. Implementation of convolution with rotated elongated HGF.

where λ > 0 is a parameter and Hn(x) � (−1)nex2 dn

dxn e−x2

is the
n-th order Hermite polynomial. Let Rθ be the rotation matrix with
angle θ. We wish to express Hλ

m,n(Rθr) as a linear combination of
fixed steering bases P s

m,n(r, λ) with coefficients as(θ). It can be
shown [6, 9] that such bases are the terms of the Fourier expansion
of Hλ

m,n(ρ cosφ, ρ sinφ) w.r.t. the angular coordinate φ, and that
as(θ) = eisθ. Moreover, P s

m,n(r, λ) are circular harmonic func-
tions (CHF), i.e., they are the product of a radial term Us

m,n(ρ, λ)
with eisφ. Thus we have:

Hλ
m,n(Rθr) =

∞∑
s=−∞

eisθP s
m,n(r, λ) (2)

P s
m,n(ρ, φ,λ) = Us

m,n(ρ, λ)eisφ (3)

Examples of the reconstruction of the filters Hλ
m,n(Rθr) by means

of the expansion (2) are shown in Figs. 3-4.
The convolution Y λ

m,n(r, θ) � I(r) � Hλ
m,n(Rθr) of an image

I(r) with a rotated elongated HGF is equal to:

Y λ
m,n(r, θ) =

∞∑
s=−∞

eisθ[I(r) � P s
m,n(r, λ)]. (4)

By truncating (4) to the first N terms, the output Y λ
m,n(r, θ) can be

computed for each θ by means of a few convolutions (Fig. 2).
3. CLOSED FORM OF THE STEERING BASES

In this section, we derive a closed form of the functions Us
m,n(ρ, λ)

defined in (3). Let Um,n(ρ;λ) � {Us
m,n(ρ; λ)}∞s=−∞ be a vector
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Fig. 3. (Top, middle), real and imaginary part of the first six non-
zero steering bases P s

0,1(r, λ), for λ = 2. (Bottom) Reconstruction
of rotated elongated HGF with the first N harmonics.

Fig. 4. Same as Fig. 3 for (m, n) = (0, 2).

whose components are the required bases. We need to evaluate the
following integral:

Um,n(ρ; λ) =
1

2π

∫ 2π

0

Hm(λρ cos φ)Hn(λ−1ρ sin φ)×

× e−
(λρ cos φ)2+(λ−1ρ sin φ)2

2 e−ikφdφ (5)

with k � [...,−2,−1, 0, 1, 2, ...]T .
This integral can be simplified by means of basic properties of

the Fourier coefficients, listed in Tab. 1 in a matrix form. Here,
x � {xs}∞s=−∞ indicates the vector of the Fourier coefficients xs

of a periodic function x(φ) =
∑

s xse
isφ. Also, S indicates a shift-

ing matrix1 defined such that {Sa}n = {a}n+1 for every vector a,
where {a}n denotes the n-th component of a. Let also be:

R �
S−1 + S

2
, I �

S−1 − S
2i

. (6)

These properties follow from the fact that a multiplication for eisφ

corresponds to a shift in the frequency domain. In particular, (P7-P9)
are obtained from (P4-P5) due to the linearity of the Fourier operator.
By using (P9) with P (cos φ) = Hm(λρ cosφ) and Q(sin φ) =
Hn(λ−1ρ sinφ), (5) rewrites as:

Um,n(ρ; λ) = Hm (ρλR)Hn

(
ρλ−1I)×

× 1

2π

∫ 2π

0

e−
(λρ cos φ)2+(λ−1ρ sin φ)2

2 e−ikφdφ (7)

1The matrix S has an unlimited number of elements. In general, opera-
tions with infinite matrices are expressed in terms of infinite series, therefore
convergence problems may occur. However, since the matrix S has only one
nonzero element per row, convergence is trivially guaranteed. Convergence
allows to manipulate unlimited matrices with the ordinary algebraic rules.

Table 1. Matrix form of the shifting properties of the Fourier coef-
ficients, with P and Q polynomials

Function Coefficients vector
(P1) x(φ) x

(P2) x(φ)eiφ Sx

(P3) x(φ) cos φ Rx

(P4) x(φ) sin φ Ix
(P5) x(φ) cosn φ Rn

x

(P6) x(φ) sinn φ In
x

(P7) x(φ)P (cosφ) P (R)x
(P8) x(φ)Q(sinφ) Q(I)x
(P9) x(φ)P (cosφ)Q(sin φ) P (R)Q(I)x

Table 2. Analytical expression of the radial part Us
m,n(ρ; λ) of the

steering bases of orders zero, one and two.
(m,n) Functions Us

m,n(ρ, λ)

(0,0)
U2s

0,0(ρ; λ) = e−αρ2
Is(βρ2)

U
2s+1
0,0 (ρ; λ) = 0

(1,0)
U2s

1,0(ρ; λ) = 0

U2s+1
1,0 (ρ; λ) = λρ

2 e−αρ2
[Is(βρ2) + Is+1(βρ2)]

(0,1) U2s
0,1(ρ; λ) = 0

U
2s+1
0,1 (ρ; λ) = λ−1ρ

2i
e−αρ2

[Is(βρ2) − Is+1(βρ2)]

(2,0)
U2s

2,0(ρ; λ) =

e−αρ2
{(

λ2ρ2

2 − 1
)

Is(βρ2) + λ2ρ2

4 [Is−1(βρ2) + Is+1(βρ2)]
}

U2s+1
2,0 (ρ; λ) = 0

(1,1) U2s
1,1(ρ; λ) = ρ2

4i
e−αρ2

[Is−1(βρ2) − Is+1(βρ2)]

U
2s+1
1,1 (ρ; λ) = 0

(0,2)
U2s

2,0(ρ; λ) =

e−αρ2
{(

ρ2

2λ2 − 1
)

Is(βρ2) − ρ2

4λ2 [Is−1(βρ2) + Is+1(βρ2)]
}

U
2s+1
2,0 (ρ; λ) = 0

This integral can be evaluated with basic calculus, by using the
known result

∫ 2π

0
ex cos u+isudu = 2πIs(x), where Is(x) is the

s-th order modified Bessel function of the first type. The result is:

1

2π

∫ 2π

0

e−
(λρ cos φ)2+(λ−1ρ sin φ)2

2 e−ikφdφ = e−αρ2

I
(
βρ2) (8)

with:

I(z) � [...,0, I−1(z),0, I0(z),0, I1(z), 0, ...]T , (9)

and α � (λ−2 + λ2)/4, β � (λ−2−λ2)/4. Finally, combining (7)
and (8), we obtain

Um,n(ρ;λ) = e−αρ2

Hm (λρR)Hn

(
λ−1ρI)

I
(
βρ2) , (10)

which is the required closed form.
In this expression, the term Hm(ρλR)Hn(ρλ−1I) is a polyno-

mial of the shifting matrices S and S−1 of degree m+n. Therefore,
Us

m,n(ρ; λ) is the product of the Gaussian term e−αρ2

with a linear
combination of modified Bessel functions of different orders, be-
tween s−⌈

m+n
2

⌉
and s+

⌈
m+n

2

⌉
, whose coefficients are expressed

in terms of the Hermite coefficients and powers of λρ and λ−1ρ. Ex-
plicit expressions of the functions Us

m,n(ρ; λ) are given in Tab. 2 for
the orders zero, one and two. As we see, the matrix form deployed
in (10) considerably simplifies the notation and unifies the cases of
even and odd indices (m,n).
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4. SOME PROPERTIES OF THE STEERING BASES
In this section, we show some properties of the steering bases, which
stem from the closed form (10).

1. Conjugate symmetry. We have P−s
m,n(ρ, φ, λ) = P s

m,n(ρ, φ, λ),
where z indicates the complex conjugate of z.

2. Zero terms. We have P s
m,n(ρ, φ, λ) = 0 iff m + n + s is an

odd number. Properties 1 and 2 allow to reduce the computational
complexity of expansion (4) by a factor four.

3. Orthogonality. As all CHF, the functions P s
m,n(r, λ) satisfy the

orthogonality relation∫
P s

m,n(r, λ)P p
m,n(r, λ)d2

r = 0, s �= p, (11)

thus making, for any λ, multiple sets of orthogonal bases.

4. Recursive formulas. Using the well known identity Hn+1(x) =
xHn(x)−Hn−1(x) into (10), we obtain the following recursive
formulas for the steering bases:

P s
m+1,n(r, λ) = λρ

2

[
P

s−1
m,n (r, λ) + P

s+1
m,n (r, λ)

]
− mP s

m,n(r, λ)

P s
m,n+1(r, λ) = λ−1ρ

2i

[
P

s−1
m,n (r, λ) − P

s+1
m,n (r, λ)

]
− nP s

m,n(r, λ)

These formulas allow to recursively implement the steering bases
of any order (m, n), which is faster than evaluating polynomials
of matrices as in (10).

5. Relation to Laguerre-Gauss harmonics. Eq. (10) reduces to the
Laguerre-Gauss harmonics for λ = 1. This can be demonstrated
as follows. Let us consider the following expansion [2]:

Hm(x)Hn(y) =

m+n∑
s=−(m+n)

Cs
m,nρsL

|s|
m+n−s

2

(ρ2)eisφ (12)

where Ln
α(x) � x−αex

n!
dn

dxn

(
e−xxn+α

)
are the generalized La-

guerre polynomials, and Cs
m,n is given by:

Cs
m,n =

(m + n− s

2

)
!

m∑
r=0

(−1)r

(
m

r

)(
n

m+n−s
2

− r

)
(13)

when m + n− s is even, and equal to 0 when m + n− s is odd.
By comparing expansions (2) and (12), we see that for λ = 1 and
s ≤ m + n the steering bases reduce to

P s
m,n(ρ, φ, λ = 1) = Cs

m,ne−ρ2/2ρsL
|s|
m+n−s

2

(ρ2)eisφ (14)

which are the well-known Laguerre-Gauss harmonics [10], while
they reduce to 0 for s > m + n.

6. Fourier transform. Since the bases P s
m,n(r, λ) are CHF, their

Fourier transform is a CHF as well, whose radial part is given by
the s-th order Hankel transform of Us

m,n(ρ,λ) [10]. Its evaluation
involves the solution of integrals in the form∫ ∞

0

xαe−βxJp(γ
√

x)Is(δx)dx (15)

whose closed form is known [11]. A tedious computation yields
the following interesting result:

P s
m,n(r, λ)

F2D−−−→ im+n+sP s
n,m(ω, λ). (16)

In other words, the 2D Fourier transform of a steering basis func-
tion is still a steering basis function. Moreover, for m = n they
make a dyadic family of eigenfunctions of the 2D Fourier trans-
form, with eigenvalues i2n+s .

Fig. 5. Edge detection scheme.

5. EXPERIMENTAL RESULTS
We now show some experimental results related to the application
of the steering bases to edge detection. We follow the approach de-
picted in Fig. 5, where the «Wavelet analysis» block is implemented
through the filter bank detailed in Fig. 2. Our experiments show that
the number of filters needed to achieve a neglectable reconstruction
error is equal to λ2. The filter bank output Y λ

0,1(r, θ), defined in
(4), detects edges oriented along the direction θ. Then, local edge
direction θλ(r) and local edge strength Eλ(r) are determined as

θλ(r) � arg max
θ

Y λ
0,1(r, θ), Eλ(r) = Y λ

0,1[r, θλ(r)]. (17)

An example of the edge strength Eλ(r) is shown in Fig. 6 for
λ = 1 and λ = 2, by keeping constant the product of the scale pa-
rameters across and along the edge direction. For high values of λ,
edge localization is higher and contours are better preserved, such
as in the elephant’s tusks (marked by an arrow). Moreover, texture
edges form structured chains of collinear edges, instead of meaning-
less random patterns. In Fig. 7, robustness to noise is shown. These
results are related to the same smoothing orthogonally to the edge
direction, which implies same edge localization. Larger values of λ
allow for a larger smoothing along the edge direction, thus rejecting
more noise. A larger set of examples is available on line2.

Finally, edges are detected as in [3] by non-maxima suppression
and thresholding. To quantify the performance of this approach, we
compare the detected contours with hand drawn ground truths. Sim-
ilarity between our results and ground truths has been measured in
terms of the well-established Pratt’s figure of merit F [12], which is
always between 0 and 1, being 1 iff the detected contours coincide
with the ground truth. The values of F , averaged over a set of 40
images, are plotted in Fig. 8 for different values of λ vs the fraction
p of pixels above the threshold. As we see, higher values of λ result
in an improvement of about 12.5% in terms of F . Further improve-
ment could be achieved by deploying post-processing steps, similar
to [13,14].

6. SUMMARY AND CONCLUSIONS
We have shown that the wavelets resulting from steering the elon-
gated HGF in the framework of single value decomposition [7] can
be expressed analytically both in the spatial and the frequency do-
main. Specifically, the concerned functions are CHF, whose radial
part is expressed in terms of a Gaussian term, modified Bessel func-
tions of the first kind, and Hermite polynomials. Moreover, the ma-
trix notation introduced here, considerably simplifies our derivation
and unifies the cases of even and odd indices orders.

A closed form of the studied wavelets allows to carry out a deep
theoretical study of their properties. In particular, we show that these
filters make a new dyadic family of the 2D Fourier transform, thus
making them interesting for some areas of signal and image process-
ing, such as joint time-frequency analysis [15], as well as other areas

2http://www.cs.rug.nl/~imaging/ICIP2010
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Fig. 6. From left to right: Input image and edge strength Eλ(r)
for λ = 1 and λ = 2, by keeping constant the product of the scale
parameters across and along the edge direction.

Fig. 7. First row, from left to right: noisy input image (SNR=13dB),
edge strength Eλ(r) for λ = 1 and λ = 2, and same amount of
smoothing in the gradient direction. Second row: details.

of science, such as optics and quantum-mechanics. They also make
a natural generalization of the well-known Laguerre-Gauss harmon-
ics, which have successfully applied in many areas of image anal-
ysis, such as texture modeling, classification, stereoscopic imaging,
denoising, and many others. Moreover, they can be implemented
recursively, thus saving computation time.

The application of the steered elongated HGF of order (m, n) =
(0, 1) to edge detection allows to go beyond the Canny limit in the
tradeoff between noise rejection and localization accuracy. In partic-
ular, while for 1D filters the maximum value of the Canny objective
function is independent of scaling, in the 2D case it increases propor-
tionally to λ2 = σy/σx, where σx and σy are, respectively, the scale
parameters in the direction orthogonal and parallel to the edge. Our
experimental results are in agreement with this general principle. In
particular, a performance increase of about 12.5% with respect to
standard methods is achieved in terms of the Pratt’s figure of merit.
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