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Steerable filtering using novel circular harmonic functions

with application to edge detection

Giuseppe Papari*, Patrizio Campisi**, Nicolai Petkov*

* Institute of Mathematics and Computing Science, University of Groningen

** Dipartimento di Elettronica Applicata, Universita’ degli Studi Roma Tre, Roma, Italy

Abstract—In this paper, we perform approximate steering
of the elongated 2D Hermite-Gauss functions with respect to

rotations and provide a compact analytical expressions for
the related basis functions. A special notation introduced here

considerably simplifies the derivation and unifies the cases of
even and odd indices. The proposed filters are applied to edge

detection. Quantitative analysis shows a performance increase
of about 12.5% in terms of the Pratt’s figure of merit with

respect to the well-established Gaussian gradient proposed by
Canny.

Keywords-Edge detection; Hermite-Gauss wavelets; Steer-

able filters

I. INTRODUCTION

The concept of steerability has been introduced in [1].

Specifically, a set of filters depending on a continuous

parameter is steerable if it can be expressed as a linear

combination of fixed basis functions. The convolution of

an image with a steerable filter can be evaluated exactly for

any value the concerned parameter, by means of convolu-

tions with each basis function [1]. Moreover, integrals and

derivatives with respect to the parameters can be evaluated

efficiently by acting directly on the coefficients. Steerable

filtering has been successfully applied in several areas of

image processing, such as feature detection [2]–[6], texture

modeling [7], denoising [8], [9], or invariants theory [10],

[11].

When a filter is not steerable, approximate steering is

performed by looking for an exactly steerable template

which approximates the original family of filters. This is

usually done by deploying orthogonal bases, thus providing

the most compact approximation [3], [6], [12]. However,

as pointed out in [3] closed forms of the resulting basis

functions are hardly found and numerical solutions are often

deployed.

In this paper, we provide a closed form of the basis

functions which steer 2D Hermite-Gauss functions with

respect to rotations, which are circular harmonic functions

(CHF). We also apply the proposed filters to the problem of

edge detection and validate the method with a broad range

of experimental results.

II. BACKGROUND

In this section, we briefly recall the definition of steerable

filters and of the 2D Hermite-Gauss functions.

Figure 1. From left to right: 2D Hermite-Gauss filters of orders,
respectively, (0,0), (1,0), (0,1), (2,0), (1,1), and (0,2).

A. Steerable filters

A family of filters F (r, Λ) which continuously depends

on the parameter Λ is steerable if it can be expressed as

linear combination of basis Vs(r) with coefficients as(Λ):

F (r, Λ) =

N
∑

s=1

as(Λ)Vs(r) (1)

The convolution of an image I(r) with a steerable filter is

given by:

Y (r, Λ) , I(r) ⋆ F (r, Λ) =

N
∑

s=1

as(Λ)[I(r) ⋆ Vs(r)]

Thus, once the convolutions I(r) ⋆ Vs(r) are computed,

Y (r, Λ) can be evaluated exactly for any Λ.

Let us consider the case in which the concerned filters

are rotated version of a fixed template T (r), i.e., Λ = θ and

F (r, θ) = T (Rθr), where Rθ is a rotation matrix of angle

θ. We will express r in polar coordinates (ρ, φ). It can be

shown that F (r, θ) is steerable with respect to rotations iff

the template T (r) can be expressed as a linear combina-

tion of exponentials eisφ with coefficients depending on ρ.

Moreover, the coefficients as(θ) are simply eisθ [1]. When

T (ρ, φ) is not steerable, a steerable template which best

approximates T (ρ, φ), is obtained by considering the first

terms of the Fourier expansion of T (ρ, φ) with respect to

the angular coordinate φ (singular value decomposition) [3].

B. Elongated 2D Hermite-Gauss filters

The 2D Hermite-Gauss (HG) filters are defined as

Hm,n(x, y) ,
1

C(m,n)
Hm(x)Hn(y)e−

x
2+y

2

2 , (2)

where C(m,n) =
√

2m+nπm!n! and Hn(x) ,

ex2

(−1)n dn

dxn

(

e−x2
)

is the n-th order Hermite polynomial.
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These filters are used to detect local features, such as edges

and ridges and, more recently, for image compression [13],

[14]. Examples of these filters for the orders 0, 1, and 2 are

given in Fig. 1. Moreover, these filters are exactly steerable

with respect to rotations and the basis functions are the

well known Laguerre-Gauss harmonics [15].

In this paper, we are interested in the following template,

where λ > 0 is a parameter:

Tm,n(x, y, λ) , Hm,n(λx, λ−1y) (3)

which is an elongated version of the HG defined above. One

advantage of elongated filter is the possibility to go beyond

Canny’s limit in the tradeoff between good detection and

good localization of a given feature [16]. Another advantage,

illustrated in Fig. 2 concerns the possibility to discriminate

between interesting features and noise by analyzing the

response of the filter for different orientation. Specifically,

let

Y m,n(r, θ, λ) , I(r) ⋆ Tm,n(Rθr, λ) (4)

be the result of the convolution of an image I(r) with a

rotated elongated HG filter. For a fixed point r, this becomes

a function of the sole θ, which is plotted in Fig. 2 for the

case (m, n) = (0, 1) and for λ = 1 and λ = 2. As we

see, in the elongated case, the shape of the polar diagram

changes considerably between an edge and a noisy input,

thus discriminating between the two cases. In contrast, for

the non-elongated case, such a discrimination is not possible.

Unfortunately, elongated HG filters are not exactly steer-

able with respect to rotations. Approximate steering has been

performed in [3] for the orders (0, 1) and (0, 2) only, but

only numerical solution have been provided. In the next

section, we will extend the results given in [3] to provide a

closed form of for the generic order (m, n).

III. STEERING THE 2D HG FILTERS

In this Section, we steer the template Tm,n(x, y, λ) in the

framework of singular value decomposition [3] by consid-

ering the following Fourier expansion:

Tm,n(ρ cos φ, ρ sinφ, λ) =

∞
∑

s=−∞

V m,n
s (ρ; λ)eisφ.

Let U
m,n(ρ; λ) , {Um,n

s (ρ; λ)}∞s=−∞
be a vector whose

components are the required bases Um,n
s (ρ; λ). We need to

evaluate the following integral:

U
m,n(ρ; λ) =

=
1

2π

∫ 2π

0

Hm,n(λρ cos φ, λ−1ρ sin φ)e−ikφdφ
(5)

with k , [...,−2,−1, 0, 1, 2, ...]T

Let x(φ) be a periodic function with period 2π and

let xs its Fourier coefficients. As well known, the Fourier

coefficients of the functions u(φ) , x(φ) cosφ and v(φ) ,

Figure 2. Top: an edge and a noisy input. Middle: the elongated
filter T 0,1(r, λ), λ = 2 and the polar plot of the function
V 0,1(r, θ, λ) defined in (4), with r fixed at the center of the image.
Bottom: the same for λ = 1.

x(φ) sinφ are, respectively, us = (xs−1+xs+1)/2 and vs =
(xs−1−xs+1)/2i. We introduce the vectors x , {xs}∞s=−∞

,

u , {us}∞s=−∞
, and v , {vs}∞s=−∞

, and the shifting matrix

S 1 , which is defined such that {Sa}n = {a}n+1 for every

vector a, where {a}n denotes the n-th component of a.

Then, the above results can be rewritten as u = Rx and v =
Ix, with R , (S−1 + S)/2 and I , (S−1 − S)/2i. More

in general, due to the linearity of the Fourier operator, the

coefficients of the functions x(φ)P (cosφ) and x(φ)Q(sinφ)
with P and Q polynomials, are equal to P (R)x and Q(I)x.

Therefore the evaluation of (5) reduces to the evaluation of

U
0,0(ρ; λ) since we obtain:

U
m,n(ρ; λ) =

=
1

C(m,n)
Hm (ρλR) Hn

(

ρλ−1I
)

U
0,0(ρ; λ)

(6)

The integral (5) for (m, n) = (0, 0) can be easily evalu-

ated with basic calculus, by taking into account the well

known result
∫ 2π

0
ex cosu+ikudu = 2πIn(x), where In(x)

is the n-th order modified Bessel function of the first type.

Specifically, we have:

U
0,0(ρ; λ) = e−αρ2

I
(

βρ2
)

(7)

1The matrix S has an unlimited number of elements. In general,
operations with infinite matrices are expressed in terms of infinite series,

therefore convergence problems may occur. However, since the matrix S

has only one nonzero element per row, convergence is trivially guaranteed.

Convergence allows to manipulate unlimited matrices with the ordinary
algebraic rules.
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Figure 3. Proposed approach for edge detection.

with:

I(z) , [..., 0, I−1(z), 0, I0(z), 0, I1(z), 0, ...]T (8)

and α , (λ−2 + λ2)/4, β , (λ−2 − λ2)/4.

Therefore, combining (6) and (7), we obtain

U
m,n(ρ; λ) =

e−αρ2

C(m,n)
Hm (ρλR) Hn

(

ρλ−1I
)

I
(

βρ2
)

which is the required closed form. As we see, the functions

Um,n
s (ρ, λ) are linear combinations of modified Bessel func-

tions, whose coefficients are expressed in terms of Hermite

polynomials of λρ and λ−1ρ.

IV. EXPERIMENTAL RESULTS

We now show some experimental results related to the

application of the proposed CHF to edge detection. We

follow the approach depicted in Fig. 3. To discriminate

between edges and noise, we compute the inertia tensor

of the polar diagram of Fig. 2 for each point of the input

image. Specifically, we compute (i) edge strength Eλ(r)
as the difference between the maximum and the minimum

eigenvalue of such inertia tensor, and (ii) local edge direction

θλ(r) as the direction of the eigenvector that corresponds

to the minimum eigenvalue. With basic algebra, it can be

proved that Eλ(r) and θλ(r) are, respectively, amplitude

and phase of the following complex number:

Z(r) ,

√

√

√

√

∞
∑

s=−∞

cs(r)cs−2(r) (9)

where z indicates the complex conjugate of z, and with:

cs(r) , I(r) ⋆ U1,0
s (ρ, λ)ei(2s+1)φ (10)

An example of the edge strength Eλ(r) is shown in Fig. 4

for λ = 1 and λ = 2. As we see, higher values of λ result in

better edge localization and less noisy contours, especially

in presence of texture. Moreover, large values of λ better

preserve object contours, such as in the tusks of the elephant

(marked by an arrow), and texture edges form structured

chains of collinear edges; in contrast, for λ = 1 they only

form meaningless random patterns. A larger set of examples

Figure 4. From left to right: Input image and edge strength Eλ(r)
for λ = 1 and λ = 2

Figure 5. Performance of the proposed method, averaged on a set
of 40 images, for different values of λ.

is available on line2. Finally, edges are detected as in [16]

by applying non-maxima suppression and thresholding.

Finally, edges are detected as in [16] by applying non-

maxima suppression and thresholding. To quantify the per-

formance improvement that elongated filter offer over non-

elongated ones, we have compared the detected contours

with hand drawn ground truths. Similarity between our

results and ground truths has been measured in terms of the

well-established Pratt’s figure of merit F [17]. The values

of F , averaged over a set of 40 images, are plotted in Fig. 5

for different values of λ vs the fraction p of pixels that are

rejected by thresholding. As we see, higher values of λ result

in an improvement of about 12.5% in terms of F . We also

observe a slow decay of the performance for λ > 3. This is

due to numerical instability caused by the fact that for high

values of λ the size of the filter orthogonally to the edge

direction becomes less than half pixel

2http://www.cs.rug.nl/~imaging/ICPR2010
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V. SUMMARY AND CONCLUSIONS

Elongated filters improve local detection of oriented fea-

tures with respect to non-elongated ones in terms of a

better compromise between noise rejection and localization

accuracy. This makes the problem of steering such filters

with respect to rotations particularly interesting in com-

puter vision. However, finding the basis functions is a hard

problem and only numerical solutions have been presented.

In contrast, an analytic solution of the basis functions has

been presented in this paper for steering with respect to

rotation an important class of filters, namely the elongated

2D Hermite-Gauss functions. Moreover, the special notation

introduced here, greatly simplifies the related maths and,

in particular, unifies the cases of even and odd indices. The

proposed filters are applied to the problem of edge detection.

Quantitative analysis shows a performance increase of about

12.5% in terms of the Pratt’s figure of merit with respect to

the well-established non-elongated case.
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