293 research outputs found

    Seasonal variability in the source and composition of particulate matter in the depositional zone of Baltimore Canyon, U.S. Mid-Atlantic Bight

    Get PDF
    Submarine canyons are often hotspots of biomass due to enhanced productivity and funneling of organic matterof marine and terrestrial origin. However, most deep-sea canyons remain poorly studied in terms of their role asconduits of terrestrial and marine particles. A multi-tracer geochemical investigation of particles collectedyearlong by a sediment trap in Baltimore Canyon on the US Mid-Atlantic Bight (MAB) revealed temporalvariability in source, transport, and fate of particulate matter. Both organic biomarker composition (sterol and nalkanes)and bulk characteristics (ή13C, Δ14C, Chl-a) suggest that while on average the annual contribution ofterrestrial and marine organic matter sources are similar, 42% and 52% respectively, marine sources dominate.Elevated Chlorophyll-a and sterol concentrations during the spring sampling period highlight a seasonal influx ofrelatively fresh phytodetritus. In addition, the contemporaneous increase in the particle reactive micronutrientscadmium (Cd) and molybdenum (Mo) in the spring suggest increased scavenging, aggregation, and sinking ofphytodetrital biomass in response to enhanced surface production within the nutricline. While tidally drivencurrents within the canyon resuspend sediment between 200 and 600 m, resulting in the formation of a nepheloidlayer rich in lithogenic material, near-bed sediment remobilization in the canyon depositional zone wasminimal. Instead, vertical transport and lateral transport across the continental margin were the dominantprocesses driving seasonal input of particulate matter. In turn, seasonal variability in deposited particulate organicmatter is likely linked to benthic faunal composition and ecosystem scale carbon cycling

    Long Distance Contribution to s→dÎłs \to d\gamma and Implications for Î©âˆ’â†’Îžâˆ’Îł,Bs→Bd∗γ\Omega^-\to \Xi ^-\gamma, B_s \to B_d^*\gamma and b→sÎłb \to s\gamma

    Full text link
    We estimate the long distance (LD) contribution to the magnetic part of the s→dÎłs \to d\gamma transition using the Vector Meson Dominance approximation (V=ρ,ω,ψi)(V=\rho,\omega,\psi_i). We find that this contribution may be significantly larger than the short distance (SD) contribution to s→dÎłs \to d\gamma and could possibly saturate the present experimental upper bound on the Î©âˆ’â†’Îžâˆ’Îł\Omega^-\to \Xi^-\gamma decay rate, Î“Î©âˆ’â†’Îžâˆ’ÎłMAX≃3.7×10−9\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma} \simeq 3.7\times10^{-9}eV. For the decay Bs→Bd∗γB_s \to B^*_d\gamma, which is driven by s→dÎłs \to d\gamma as well, we obtain an upper bound on the branching ratio BR(Bs→Bd∗γ)<3×10−8BR(B_s \to B_d^*\gamma)<3\times10^{-8} from Î“Î©âˆ’â†’Îžâˆ’ÎłMAX\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma}. Barring the possibility that the Quantum Chromodynamics coefficient a2(ms)a_2(m_s) be much smaller than 1, Î“Î©âˆ’â†’Îžâˆ’ÎłMAX\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma} also implies the approximate relation 23∑igψi2(0)mψi2≃12gρ2(0)mρ2+16gω2(0)mω2\frac{2}{3} \sum_i \frac{g^2_{\psi_i}(0)}{m^2_{\psi_i}} \simeq \frac{1}{2} \frac{g^2_\rho(0)}{m^2_\rho} + \frac{1}{6}\frac{g^2_\omega(0)}{m^2_\omega}. This relation agrees quantitatively with a recent independent estimate of the l.h.s. by Deshpande et al., confirming that the LD contributions to b→sÎłb \to s\gamma are small. We find that these amount to an increase of (4±2)%(4\pm2)\% in the magnitude of the b→sÎłb \to s \gamma transition amplitude, relative to the SD contribution alone.Comment: 16 pages, LaTeX fil

    Higgs-Boson Production Induced by Bottom Quarks

    Full text link
    Bottom quark-induced processes are responsible for a large fraction of the LHC discovery potential, in particular for supersymmetric Higgs bosons. Recently, the discrepancy between exclusive and inclusive Higgs boson production rates has been linked to the choice of an appropriate bottom factorization scale. We investigate the process kinematics at hadron colliders and show that it leads to a considerable decrease in the bottom factorization scale. This effect is the missing piece needed to understand the corresponding higher order results. Our results hold generally for charged and for neutral Higgs boson production at the LHC as well as at the Tevatron. The situation is different for single top quark production, where we find no sizeable suppression of the factorization scale. Turning the argument around, we can specify how large the collinear logarithms are, which can be resummed using the bottom parton picture.Comment: 18 page

    Analytic Methods in Nonperturbative QCD

    Full text link
    Recently developed analytic methods in the framework of the Field Correlator Method are reviewed in this series of four lectures and results of calculations are compared to lattice data and experiment. Recent lattice data demonstrating the Casimir scaling of static quark interaction strongly support the FCM and leave very little space for all other theoretical models, e.g. instanton gas/liquid model. Results of calculations for mesons, baryons, quark-gluon plasma and phase transition temperature demonstrate that new analytic methods are a powerful tool of nonperturbative QCD along with lattice simulations.Comment: LaTeX, 34 pages; Lectures given at the 13th Indian-Summer School "Understanding the Structure of Hadrons", August 28 - September 1, 2000, Prague, Czech Republi

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∌25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    Critical aspects of three-dimensional anisotropic spin-glass models

    Get PDF
    We study the ±J\pm J three-dimensional Ising model with a longitudinal anisotropic bond randomness on the simple cubic lattice. The random exchange interaction is applied only in the zz direction, whereas in the other two directions, xyxy - planes, we consider ferromagnetic exchange. By implementing an effective parallel tempering scheme, we outline the phase diagram of the model and compare it to the corresponding isotropic one, as well as to a previously studied anisotropic (transverse) case. We present a detailed finite-size scaling analysis of the ferromagnetic - paramagnetic and spin glass - paramagnetic transition lines, and we also discuss the ferromagnetic - spin glass transition regime. We conclude that the present model shares the same universality classes with the isotropic model, but at the symmetric point has a considerably higher transition temperature from the spin-glass state to the paramagnetic phase. Our data for the ferromagnetic - spin glass transition line are supporting a forward behavior in contrast to the reentrant behavior of the isotropic model.Comment: 10 pages, 9 eps figures, 1 table, corrected symbolis

    Heritability of attention problems in children II: longitudinal results from a study of twins age 3 to 12.

    Get PDF
    this paper we present data of large samples of twin families, with an equal number of girls and boys. The well-known gender difference with boys displaying more OA and AP was observed at each age. Even at the age of 3, boys display more OA problems than girls. Clinical studies have indicated that severe problem behavior can be identified in very young children (see for review, Campbell, 1995; Keenan &amp; Wakschlag, 2000; Shaw, Owens, Giovannelli, &amp; Winslow, 2001) and that the onset of ADHD is during the pre-school period (Barkley, Fisher, Edelbrock, &amp; Smallish, 1990; Table 6 Top part includes percentages of total variances (diagonal) and covariances (off-diagonal) explained by additive genetic, genetic dominance, and unique environmental components based on best fitting models. Percentages for boys and girls are reported below and above diagonal, respectively. Lower part includes correlations calculated for additive genetic, genetic dominance, and unique environmental sources of variance between different ages. Correlations for boys and girls are reported below and above diagonal, respectively Relative proportions of variance and covariance BoysnGirls A% D% E% OA 3 AP 7 AP 10 AP 12 OA 3 AP 7 AP 10 AP 12 OA 3 AP 7 AP 10 AP 12 OA 3 50n41 73 79 75 22n33 17 13 14 28n26 10 8 11 AP 7 59 33n57 50 53 31 39n16 31 28 10 28n27 19 19 AP 10 86 31 41n48 47 6 51 31n25 32 8 18 28n27 21 AP 12 71 24 31 40n54 16 55 45 30n18 13 21 24 30n28 Correlations between different ages BoysnGirls ADE OA 3 AP 7 AP 10 AP 12 OA 3 AP 7 AP 10 AP 12 OA 3 AP 7 AP 10 AP 12 OA 3 1.00 .60 .66 .57 1.00 .30 .16 .20 1.00 .15 .12 .14 AP 7 .57 1.00 .62 .57 .41 1.00 .99 1.00 .15 1.00 .46 .41 AP 10 .68 .56 1.00 .61 .08 .94 1.00 1.00 .11 .42 1.00 .50 AP 12 .49 .42 .53 1.00 .20 .98 .99 1.00 .14 .45 .58 1.00 ..
    • 

    corecore