3,232 research outputs found

    Flap Endonuclease Disengages Dna2 Helicase/Nuclease from Okazaki Fragment Flaps

    Get PDF
    Okazaki fragments contain an initiator RNA/DNA primer that must be removed before the fragments are joined. In eukaryotes, the primer region is raised into a flap by the strand displacement activity of DNA polymerase {delta}. The Dna2 helicase/nuclease and then flap endonuclease 1 (FEN1) are proposed to act sequentially in flap removal. Dna2 and FEN1 both employ a tracking mechanism to enter the flap 5' end and move toward the base for cleavage. In the current model, Dna2 must enter first, but FEN1 makes the final cut at the flap base, raising the issue of how FEN1 passes the Dna2. To address this, nuclease-inactive Dna2 was incubated with a DNA flap substrate and found to bind with high affinity. FEN1 was then added, and surprisingly, there was little inhibition of FEN1 cleavage activity. FEN1 was later shown, by gel shift analysis, to remove the wild type Dna2 from the flap. RNA can be cleaved by FEN1 but not by Dna2. Pre-bound wild type Dna2 was shown to bind an RNA flap but not inhibit subsequent FEN1 cleavage. These results indicate that there is a novel interaction between the two proteins in which FEN1 disengages the Dna2 tracking mechanism. This interaction is consistent with the idea that the two proteins have evolved a special ability to cooperate in Okazaki fragment processing

    Dynamic removal of replication protein A by Dna2 facilitates primer cleavage during Okazaki fragment processing in Saccharomyces cerevisiae

    Get PDF
    Eukaryotic Okazaki fragments are initiated by an RNA/DNA primer, which is removed before the fragments are joined. Polymerase d displaces the primer into a flap for processing. Dna2 nuclease/helicase and flap endonuclease 1 (FEN1) are proposed to cleave the flap. The single-stranded DNA binding protein, replication protein A (RPA), governs cleavage activity. Flap-bound RPA inhibits FEN1. This necessitates cleavage by Dna2, which is stimulated by RPA. FEN1 then cuts the remaining RPA-free flap to create a nick for ligation. Cleavage by Dna2 requires that it enter the 5'-end and track down the flap. Since Dna2 cleaves the RPA-bound flap, we investigated the mechanism by which Dna2 accesses the protein-coated flap for cleavage. Using a nuclease-defective Dna2 mutant, we showed that just binding of Dna2 dissociates the flap-bound RPA. Facile dissociation is specific to substrates with a genuine flap, and will not occur with an RPA-coated single strand. We also compared the cleavage patterns of Dna2 with and without RPA to better define RPA stimulation of Dna2. Stimulation derived from removal of DNA folding in the flap. Apparently, coordinated with its dissociation, RPA relinquishes the flap to Dna2 for tracking in a way that does not allow flap structure to reform. We also found that RPA strand melting activity promotes excessive flap elongation, but it is suppressed by Dna2-promoted RPA dissociation. Overall, results indicate that Dna2 and RPA coordinate their functions for efficient flap cleavage and preparation for FEN1

    Myosin VI contributes to synaptic transmission and development at the Drosophila neuromuscular junction

    Get PDF
    Abstract Background Myosin VI, encoded by jaguar (jar) in Drosophila melanogaster, is a unique member of the myosin superfamily of actin-based motor proteins. Myosin VI is the only myosin known to move towards the minus or pointed ends of actin filaments. Although Myosin VI has been implicated in numerous cellular processes as both an anchor and a transporter, little is known about the role of Myosin VI in the nervous system. We previously recovered jar in a screen for genes that modify neuromuscular junction (NMJ) development and here we report on the genetic analysis of Myosin VI in synaptic development and function using loss of function jar alleles. Results Our experiments on Drosophila third instar larvae revealed decreased locomotor activity, a decrease in NMJ length, a reduction in synaptic bouton number, and altered synaptic vesicle localization in jar mutants. Furthermore, our studies of synaptic transmission revealed alterations in both basal synaptic transmission and short-term plasticity at the jar mutant neuromuscular synapse. Conclusions Altogether these findings indicate that Myosin VI is important for proper synaptic function and morphology. Myosin VI may be functioning as an anchor to tether vesicles to the bouton periphery and, thereby, participating in the regulation of synaptic vesicle mobilization during synaptic transmission

    The impact of interpersonal relationships on rural doctors’ clinical courage

    Get PDF
    Introduction: Clinical courage occurs when rural doctors push themselves to the limits of their scope of practice to provide the medical care needed by patients in their community. This mental strength to venture, persevere and act out of concern for one’s patient, despite a lack of formally recognised expertise, becomes necessary for doctors who work in relative professional isolation. Previous research by the authors suggested that the clinical courage of rural doctors relies on the relationships around them. This article explores in more depth how relationships with others can impact on clinical courage. Methods: At an international rural medicine conference in 2017, doctors who practised rural/remote medicine were invited to participate in the study. Twenty-seven semistructured interviews were conducted exploring experiences of clinical courage. Initial analysis of the material, using a hermeneutic phenomenological frame, sought to understand the meaning of clinical courage. In the original analysis, an emic question arose: ‘How do interpersonal relationships impact on clinical courage’. The material was re-analysed to explore this question, using Wenger’s community of practice as a theoretical framework. Results: This study found that clinical courage was affected by the relationships rural doctors had with their communities and patients, with each other, with the local members of their healthcare team and with other colleagues and health leaders outside their immediate community of practice. Conclusion: As a collective, rural doctors can learn, use and strengthen clinical courage and support its development in new members of the discipline. Relationships with rural communities, rural patients and urban colleagues can support the clinical courage of rural doctors. When detractors challenge the value of clinical courage, it requires individual rural doctors and their community of practice to champion rural doctors’ way of working

    Environmental and genetic factors associated with Solanesol accumulation in potato leaves

    Get PDF
    Solanesol is a high value 45-carbon, unsaturated, all-trans-nonaprenol isoprenoid. Recently solanesol has received particular attention because of its utility, both in its own right and as a precursor in the production of numerous compounds used in the treatment of disease states. Solanesol is found mainly in solanaceous crops such as potato, tomato, tobacco and pepper where it accumulates in the foliage. There is considerable potential to explore the extraction of solanesol from these sources as a valuable co-product. In this study we have characterised the genetic variation in leaf solanesol content in a biparental, segregating diploid potato population. We demonstrate that potato leaf solanesol content is genetically controlled and identify several quantitative trait loci associated with leaf solanesol content. Transient over-expression of genes from the methylerythritol 4-phosphate (MEP) and mevalonic acid (MVA) pathways, either singly or in combination, resulted in enhanced accumulation of solanesol in leaves of Nicotiana benthamiana, providing insights for genetically engineering the pathway. We also demonstrate that in potato, leaf solanesol content is enhanced by up to six-fold on exposure to moderately elevated temperature and show corresponding changes in expression patterns of MEP and MVA genes. Our combined approaches offer new insights into solanesol accumulation and strategies for developing a bio-refinery approach to potato production

    Significance of the dissociation of Dna2 by flap endonuclease 1 to Okazaki fragment processing in Saccharomyces cerevisiae

    Get PDF
    Okazaki fragments are initiated by short RNA/DNA primers, which are displaced into flap intermediates for processing. Flap endonuclease 1 (FEN1) and Dna2 are responsible for flap cleavage. Replication protein A (RPA)-bound flaps inhibit cleavage by FEN1 but stimulate Dna2, requiring that Dna2 cleaves prior to FEN1. Upon cleavage, Dna2 leaves a short flap, which is then cut by FEN1 forming a nick for ligation. Both enzymes require a flap with a free 5'-end for tracking to the cleavage sites. Previously, we demonstrated that FEN1 disengages the tracking mechanism of Dna2 to remove it from the flap. To determine why the disengagement mechanism evolved, we measured FEN1 dissociation of Dna2 on short RNA and DNA flaps, which occur during flap processing. Dna2 tracked onto these flaps but could not cleave, presenting a block to FEN1 entry. However, FEN1 disengaged these nonproductively bound Dna2 molecules, proceeding on to conduct proper cleavage. These results clarify the importance of disengagement. Additional results showed that flap substrate recognition and tracking by FEN1, as occur during fragment processing, are required for effective displacement of the flap-bound Dna2. Dna2 was recently shown to dissociate flap-bound RPA, independent of cleavage. Using a nuclease-defective Dna2 mutant, we reconstituted the sequential dissociation reactions in the proposed RPA/Dna2/FEN1 pathway showing that, even without cutting, Dna2 enables FEN1 to cleave RPA-coated flaps. In summary, RPA, Dna2, and FEN1 have evolved highly coordinated binding properties enabling one protein to succeed the next for proper and efficient Okazaki flap processing

    Dna2 is a structure-specific nuclease, with affinity for 5'-flap intermediates

    Get PDF
    Dna2 is a nuclease/helicase with proposed roles in DNA replication, double-strand break repair and telomere maintenance. For each role Dna2 is proposed to process DNA substrates with a 5'-flap. To date, however, Dna2 has not revealed a preference for binding or cleavage of flaps over single-stranded DNA. Using DNA binding competition assays we found that Dna2 has substrate structure specificity. The nuclease displayed a strong preference for binding substrates with a 5'-flap or some variations of flap structure. Further analysis revealed that Dna2 recognized and bound both the single-stranded flap and portions of the duplex region immediately downstream of the flap. A model is proposed in which Dna2 first binds to a flap base, and then the flap threads through the protein with periodic cleavage, to a terminal flap length of ~5 nt. This resembles the mechanism of flap endonuclease 1, consistent with cooperation of these two proteins in flap processing

    Graph-Based Permutation Patterns for the Analysis of Task-Related fMRI Signals on DTI Networks in Mild Cognitive Impairment

    Full text link
    Permutation Entropy (PEPE) is a powerful nonlinear analysis technique for univariate time series. Very recently, Permutation Entropy for Graph signals (PEGPE_G) has been proposed to extend PEPE to data residing on irregular domains. However, PEGPE_G is limited as it provides a single value to characterise a whole graph signal. Here, we introduce a novel approach to evaluate graph signals at the vertex level: graph-based permutation patterns. Synthetic datasets show the efficacy of our method. We reveal that dynamics in graph signals, undetectable with PEGPE_G, can be discerned using our graph-based permutation patterns. These are then validated in the analysis of DTI and fMRI data acquired during a working memory task in mild cognitive impairment, where we explore functional brain signals on structural white matter networks. Our findings suggest that graph-based permutation patterns change in individual brain regions as the disease progresses. Thus, graph-based permutation patterns offer promise by enabling the granular scale analysis of graph signals.Comment: 5 pages, 5 figures, 1 tabl

    Towards a Singularity-Free Inflationary Universe?

    Get PDF
    We consider the problem of constructing a non-singular inflationary universe in stringy gravity via branch changing, from a previously superexponentially expanding phase to an FRW-like phase. Our approach is based on the phase space analysis of the dynamics, and we obtain a no-go theorem which rules out the efficient scenario of branch changing catalyzed by dilaton potential and stringy fluid sources. We furthermore consider the effects of string-loop corrections to the gravitational action in the form recently suggested by Damour and Polyakov. These corrections also fail to produce the desired branch change. However, focusing on the possibility that these corrections may decouple the dilaton, we deduce that they may lead to an inflationary expansion in the presence of a cosmological constant, which asymptotically approaches Einstein-deSitter solution.Comment: 11 pages, latex, eight uuencoded ps figures included, replaced abstract in tex

    DNA2 and EXO1 in replication-coupled, homology-directed repair and in the interplay between HDR and the FA/BRCA network

    Get PDF
    During DNA replication, stalled replication forks and DSBs arise when the replication fork encounters ICLs (interstrand crosslinks), covalent protein/DNA intermediates or other discontinuities in the template. Recently, homologous recombination proteins have been shown to function in replication-coupled repair of ICLs in conjunction with the Fanconi anemia (FA) regulatory factors FANCD2-FANCI, and, conversely, the FA gene products have been shown to play roles in stalled replication fork rescue even in the absence of ICLs, suggesting a broader role for the FA network than previously appreciated. Here we show that DNA2 helicase/nuclease participates in resection during replication-coupled repair of ICLs and other replication fork stresses. DNA2 knockdowns are deficient in HDR (homology-directed repair) and the S phase checkpoint and exhibit genome instability and sensitivity to agents that cause replication stress. DNA2 is partially redundant with EXO1 in these roles. DNA2 interacts with FANCD2, and cisplatin induces FANCD2 ubiquitylation even in the absence of DNA2. DNA2 and EXO1 deficiency leads to ICL sensitivity but does not increase ICL sensitivity in the absence of FANCD2. This is the first demonstration of the redundancy of human resection nucleases in the HDR step in replication-coupled repair, and suggests that DNA2 may represent a new mediator of the interplay between HDR and the FA/BRCA pathway
    corecore