1,634 research outputs found

    Seismic Vulnerability of Building Heritage in Aggregate, Civita Di Bagnoregio Study Case

    Get PDF

    Neuroendocrine Small Cell Carcinoma of the Cervix: A case report

    Get PDF
    Merkel cell polyomavirus (MCPyV) has been found in patients with Merkel cell carcinoma and respiratory tract infections. Merkel cell carcinoma is a primary aggressive neuroendocrine carcinoma of the skin. It has been demonstrated that MCPyV can be transmitted during sexual activity and may be present in the oral and anogenital mucosa. The aim of the present study was to evaluate whether MCPyV coexisted with HPV in three cases of neuroendocrine small cell carcinoma of the cervix using PCR and immunohistochemical analysis Three cases of NSC of the cervix were identified in the pathology archives of Parma University (Italy). Of these, two cases were associated with an adenocarcinomatous component. A set of general primers from the L1 region (forward, L1C1 and reverse, L1C2 or L1C2M) was PCR amplified to detect the broad‑spectrum DNA of genital HPV. The presence of MCPyV was investigated via immunohistochemistry using a mouse monoclonal antibody against the MCPyV LT antigen and through PCR analysis to separate viral DNA. HPV DNA was present in all three neuroendocrine carcinomas and in the adenocarcinoma component of the two mixed cases. None of the cases were immunoreactive to CM2B4 and did not contain viral DNA in either their neuroendocrine or adenocarcinomatous component. Whilst it is difficult to draw definitive conclusions from such a small sample size, these data suggested that MCPyV does not coexist with HPV in the cervix. However, in the present study, the absence of detectable MCPyV may have been due to the presence of a genotype that was not detected by the primers used in the PCR analysis or by the antibody used for the immunohistochemical study. MCPyV microRNA may also have been present, inhibiting LT expression. Additional studies with larger cohorts and more advanced molecular biology techniques are required to confirm the hypothesis of the current study

    Onset of valganciclovir resistance in two infants with congenital cytomegalovirus infection

    Get PDF
    Ganciclovir and its prodrug valganciclovir are elective treatments for cCMV. Neonates with important symptoms undergo 6 months of therapy to ameliorate/prevent symptoms and late sequelae, but evidence of resistance is emerging. Over the last 5 years, we took care of 59 cCMV infants and experienced two cases of resistance among nine cCMV infants receiving long-term valganciclovir therapy. In the first case, valganciclovir therapy was prolonged beyond 6 months due to severity of symptoms, control of viral load, and absence of adverse events. Resistance was detected in the 8th month of therapy. In the second case, after a significant reduction following valganciclovir administration and no adverse events, CMV viral load suddenly increased in the 6th month of therapy due to resistance. Both events were associated with UL97 gene mutation. The cCMV infants, affected by severe symptoms, remained in a steady state during treatment, and their later neurological development was coherent with initial seriousness of diagnosis. Prolonged therapeutic exposure may therefore be a risk for resistance, suggesting that constant dosage/weight adjustments, monthly surveillance of viral load, and therapeutic drug monitoring could be proposed to monitor resistance onset and optimize the therapy regime. The risk–benefit ratio for long-term therapy, including the possibility of resistance onset, alongside SNHL and neurodevelopmental improvement, should also be evaluated

    Genetic divergence of influenza A NS1 gene in pandemic 2009 H1N1 isolates with respect to H1N1 and H3N2 isolates from previous seasonal epidemics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Influenza A pandemic sustained by a new H1N1 variant (H1N1v) started in Mexico and the USA at the end of April 2009 spreading worldwide in a few weeks. In this study we investigate the variability of the NS1 gene of the pandemic H1N1v strain with respect to previous seasonal strains circulating in humans and the potential selection of virus variants through isolation in cell culture.</p> <p>Methods</p> <p>During the period April 27<sup>th </sup>2009-Jan 15<sup>th </sup>2010, 1633 potential 2009 H1N1v cases have been screened at our center using the CDC detection and typing realtime RT-PCR assays. Virus isolation on MDCK cells was systematically performed in 1/10 positive cases. A subset of 51 H1N1v strains isolated in the period May-September 2009 was selected for NS1 gene sequencing. In addition, 15 H1N1 and 47 H3N2 virus isolates from three previous seasonal epidemics (2006-2009) were analyzed in parallel.</p> <p>Results</p> <p>A low variability in the NS1 amino acid (aa) sequence among H1N1v isolates was shown (aa identity 99.5%). A slightly higher NS1 variability was observed among H1N1 and H3N2 strains from previous epidemics (aa identity 98.6% and 98.9%, respectively). The H1N1v strains were closely related (aa identity 92.1%) to swine reference strain (A/swine/Oklahoma/042169/2008). In contrast, substantial divergence (aa identity 83.4%) with respect to human reference strain A/Brevig Mission/1/1918 and previous epidemic strains H1N1 and H3N2 (aa identity 78.9% and 77.6%, respectively) was shown. Specific sequence signatures of uncertain significance in the new virus variant were a C-terminus deletion and a T215P substitution.</p> <p>Conclusions</p> <p>The H1N1v NS1 gene was more conserved than that of previous epidemic strains. In addition, a closer genetic identity of H1N1v with the swine than the human reference strains was shown. Hot-spots were shown in the H1N1v NS1 aa sequence whose biologic relevance remains to be investigated.</p

    The human phosphorylated pathway: a multienzyme metabolic assembly for l‐serine biosynthesis

    Get PDF
    De novo l-serine biosynthesis in the mammalian astrocytes proceeds via a linear, three-step pathway (the phosphorylated pathway) catalysed by 3-phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase (PSAT) and phosphoserine phosphatase (PSP). The first reaction, catalysed by PHGDH and using the glycolytic intermediate 3-phosphoglycerate, is strongly shifted towards the reagents, and coupling to the following step by PSAT is required to push the equilibrium towards l-serine formation; the last step, catalysed by PSP, is virtually irreversible and inhibited by the final product l-serine. Very little is known about the regulation of the human phosphorylated pathway and the ability of the three enzymes to organise in a complex with potential regulatory functions. Here, the complex formation was investigated in differentiated human astrocytes, by proximity ligation assay, and in vitro on the human recombinant enzymes. The results indicate that the three enzymes co-localise in cytoplasmic clusters that more stably engage PSAT and PSP. Although in vitro analyses based on native PAGE, size exclusion chromatography and cross-linking experiments do not show the formation of a stable complex, kinetic studies of the reconstituted pathway using physiological enzyme and substrate concentrations support cluster formation and indicate that PHGDH catalyses the rate-limiting step while PSP reaction is the driving force for the whole pathway. The enzyme agglomerate assembly of the phosphorylated pathway (the putative 'serinosome') delivers a relevant level of sophistication to the control of l-serine biosynthesis in human cells, a process strictly related to the modulation of the brain levels of d-serine and glycine, the main co-agonists of N-methyl-d-aspartate receptors and various pathological states

    Viral shedding in children infected by pandemic A/H1N1/2009 influenza virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to investigate viral shedding in otherwise healthy children with pandemic A/H1N1/2009 influenza in order to define how long children with pandemic A/H1N1/2009 influenza shed the virus, and also plan adequate measures to control the spread of the disease within households.</p> <p>Findings</p> <p>In 74 otherwise healthy children with pandemic A/H1N1/2009 influenza, nasopharyngeal swabs were taken for virus detection upon hospital admission and every two days until negative. The nasopharyngeal swabs of all of the children were positive for pandemic A/H1N1/2009 influenza virus in the first three days after the onset of infection, and only 21.6% and 13.5% remained positive after respectively 11 and 15 days. No child was positive after more than 15 days. Viral load also decreased over time, and was not associated with patient age or the risk of pneumonia. Those who shed the virus for ≥ 9 days were not at any increased risk of suffering from more severe disease in comparison with those who shed the virus for a shorter time, but their households experienced a significantly higher number of influenza-like illness during the two weeks after the onset of the initial disease (72.3% <it>vs </it>41.4%; p < 0.05).</p> <p>Conclusions</p> <p>Regardless of their age, healthy children can shed pandemic A/H1N1/2009 influenza virus for up to two weeks after illness onset, and the households of the children who shed the virus for ≥ 9 days suffered a higher number of influenza-like illness in the two weeks following the onset of the first disease. This could suggest that when a completely unknown influenza virus is circulating, isolation period of infected children has to be longer than the 7 days recommended for the infections due to seasonal influenza viruses.</p

    Identification of a novel antiviral micro-RNA targeting the NS1 protein of the H1N1 pandemic human influenza virus and a corresponding viral escape mutation

    Get PDF
    The influenza A virus (IAV) NS1 protein is one of the major regulators of pathogenicity, being able to suppress innate immune response and host protein synthesis. In this study we identified the human micro RNA hsa-miR-1307-3p as a novel potent suppressor of NS1 expression and influenza virus replication. Transcriptomic analysis indicates that hsa-miR-1307-3p also negatively regulates apoptosis and promotes cell proliferation. In addition, we identified a novel mutation in the NS1 gene of A(H1N1)pdm09 strains circulating in Italy in the 2010-11 season, which enabled the virus to escape the hsa-miR-1307-3p inhibition, conferring replicative advantage to the virus in human cells. To the best of our knowledge, this is the first validation of suppression of IAV H1N1 NS1 by a human micro RNA and the first example of an escape mutation from micro RNA-mediated antiviral response for the A(H1N1)pdm09 virus

    Biochemical and cellular studies of three human 3‐phosphoglycerate dehydrogenase variants responsible for pathological reduced L‐serine levels

    Get PDF
    In the brain, the non-essential amino acid L-serine is produced through the phosphorylated pathway (PP) starting from the glycolytic intermediate 3-phosphoglycerate: among the different roles played by this amino acid, it can be converted into D-serine and glycine, the two main co-agonists of NMDA receptors. In humans, the enzymes of the PP, namely phosphoglycerate dehydrogenase (hPHGDH, which catalyzes the first and rate-limiting step of this pathway), 3-phosphoserine aminotransferase, and 3-phosphoserine phosphatase are likely organized in the cytosol as a metabolic assembly (a "serinosome"). The hPHGDH deficiency is a pathological condition biochemically characterized by reduced levels of L-serine in plasma and cerebrospinal fluid and clinically identified by severe neurological impairment. Here, three single-point variants responsible for hPHGDH deficiency and Neu-Laxova syndrome have been studied. Their biochemical characterization shows that V261M, V425M, and V490M substitutions alter either the kinetic (both maximal activity and Km for 3-phosphoglycerate in the physiological direction) and the structural properties (secondary, tertiary, and quaternary structure, favoring aggregation) of hPHGDH. All the three variants have been successfully ectopically expressed in U251 cells, thus the pathological effect is not due to hindered expression level. At the cellular level, mistargeting and aggregation phenomena have been observed in cells transiently expressing the pathological protein variants, as well as a reduced L-serine cellular level. Previous studies demonstrated that the pharmacological supplementation of L-serine in hPHGDH deficiencies could ameliorate some of the related symptoms: our results now suggest the use of additional and alternative therapeutic approaches

    Kinetics of cytomegalovirus and Epstein-Barr virus DNA in whole blood and plasma of kidney transplant recipients: Implications on management strategies

    Get PDF
    This retrospective multicenter cohort study investigated the kinetics (ascending and descending phases) of cytomegalovirus (CMV) and Epstein-Barr virus (EBV)-DNA in whole blood (WB) and plasma samples collected from adult kidney transplant (KT) recipients. CMV-DNA kinetics according to antiviral therapy were investigated. Three hundred twenty-eight paired samples from 42 episodes of CMV infection and 157 paired samples from 26 episodes of EBV infection were analyzed by a single commercial molecular method approved by regulatory agencies for both matrices. CMV-DNAemia followed different kinetics in WB and plasma. In the descending phase of infection, a slower decay of viral load and a higher percentage of CMV-DNA positive samples were observed in plasma versus WB. In the 72.4% of patients receiving antiviral therapy, monitoring with plasma CMV-DNAemia versus WB CMV-DNAemia could delay treatment interruption by 7-14 days. Discontinuation of therapy based on WB monitoring did not result in relapsed infection in any patients. Highly different EBV-DNA kinetics in WB and plasma were observed due to lower positivity in plasma; EBV positive samples with a quantitative result in both blood compartments were observed in only 11.5% of cases. Our results emphasize the potential role of WB as specimen type for post-KT surveillance of both infections for disease prevention and management

    Freezing of gait in Parkinson’s disease patients treated with bilateral subthalamic nucleus deep brain stimulation: A long-term overview

    Get PDF
    Bilateral subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment in advanced Parkinson’s Disease (PD). However, the effects of STN-DBS on freezing of gait (FOG) are still debated, particularly in the long-term follow-up (&gt;/=5-years). The main aim of the current study is to evaluate the long-term effects of STN-DBS on FOG. Twenty STN-DBS treated PD patients were included. Each patient was assessed before surgery through a detailed neurological evaluation, including FOG score, and reevaluated in the long-term (median follow-up: 5-years) in different stimulation and drug conditions. In the long term follow-up, FOG score significantly worsened in the off-stimulation/off-medication condition compared with the preoperative off-medication assessment (z = -1.930; p = 0.05) but not in the on-stimulation/off-medication (z = -0.357; p = 0.721). There was also a significant improvement of FOG at long-term assessment by comparing on-stimulation/off-medication and off-stimulation/off-medication conditions (z = -2.944; p = 0.003). These results highlight the possible beneficial long-term effects of STN-DBS on FOG
    • …
    corecore