3 research outputs found

    Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil

    Get PDF
    The evolutionary events during the Ediacaran–Cambrian transition (~541 Myr ago) are unparalleled in Earth history. The fossil record suggests that most extant animal phyla appeared in a geologically brief interval, with the oldest unequivocal bilaterian body fossils found in the Early Cambrian. Molecular clocks and biomarkers provide independent estimates for the timing of animal origins, and both suggest a cryptic Neoproterozoic history for Metazoa that extends considerably beyond the Cambrian fossil record. We report an assemblage of ichnofossils from Ediacaran–Cambrian siltstones in Brazil, alongside U–Pb radioisotopic dates that constrain the age of the oldest specimens to 555–542 Myr. X-ray microtomography reveals three-dimensionally preserved traces ranging from 50 to 600 μm in diameter, indicative of small-bodied, meiofaunal tracemakers. Burrow morphologies suggest they were created by a nematoid-like organism that used undulating locomotion to move through the sediment. This assemblage demonstrates animal–sediment interactions in the latest Ediacaran period, and provides the oldest known fossil evidence for meiofaunal bilaterians. Our discovery highlights meiofaunal ichnofossils as a hitherto unexplored window for tracking animal evolution in deep time, and reveals that both meiofaunal and macrofaunal bilaterians began to explore infaunal niches during the late Ediacaran

    Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil

    Get PDF
    The evolutionary events during the Ediacaran–Cambrian transition (~541 Myr ago) are unparalleled in Earth history. The fossil record suggests that most extant animal phyla appeared in a geologically brief interval, with the oldest unequivocal bilaterian body fossils found in the Early Cambrian. Molecular clocks and biomarkers provide independent estimates for the timing of animal origins, and both suggest a cryptic Neoproterozoic history for Metazoa that extends considerably beyond the Cambrian fossil record. We report an assemblage of ichnofossils from Ediacaran–Cambrian siltstones in Brazil, alongside U–Pb radioisotopic dates that constrain the age of the oldest specimens to 555–542 Myr. X-ray microtomography reveals three-dimensionally preserved traces ranging from 50 to 600 μm in diameter, indicative of small-bodied, meiofaunal tracemakers. Burrow morphologies suggest they were created by a nematoid-like organism that used undulating locomotion to move through the sediment. This assemblage demonstrates animal–sediment interactions in the latest Ediacaran period, and provides the oldest known fossil evidence for meiofaunal bilaterians. Our discovery highlights meiofaunal ichnofossils as a hitherto unexplored window for tracking animal evolution in deep time, and reveals that both meiofaunal and macrofaunal bilaterians began to explore infaunal niches during the late Ediacaran

    The inventory of geological heritage of the state of SĂŁo Paulo, Brazil: Methodological basis, results and perspectives

    Get PDF
    An inventory of geological sites based on solid and clear criteria is a first step for any geoconservation strategy. This paper describes the method used in the geoheritage inventory of the State of SĂŁo Paulo, Brazil, and presents its main results. This inventory developed by the geoscientific community aimed to identify geosites with scientific value in the whole state, using a systematic approach. All 142 geosites representative of 11 geological frameworks were characterised and quantitatively evaluated according to their scientific value and risk of degradation, in order to establish priorities for their future management. An online database of the inventory is under construction, which will be available to be easily consulted and updated by the geoscientific community. All data were made available to the State Geological Institute as the backbone for the implementation of a future state geoconservation strategy.The authors acknowledge the Science Without Borders Programme, Process 075/2012, which supported this study and the SĂŁo Paulo Research Foundation (FAPESP), Process 2011/17261-6. We also thanks C. Mazoca for his help with maps and figures.info:eu-repo/semantics/acceptedVersio
    corecore