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The Lower Cambrian fossil record documents a major radia-
tion of macroscopic animals (particularly bilaterian phyla), 
coupled with significant expansion of their behavioural inter-

actions with substrates and other organisms1,2. However, a growing 
catalogue of evidence from body fossils, trace fossils, biomarkers 
and molecular clocks indicates a protracted Neoproterozoic history 
for the Metazoa, with the origin of animals significantly pre-dating 
the base of the Cambrian3.

A range of biological phenomena typically associated with ani-
mals first appears during the late Ediacaran interval (~580–541 Myr 
ago (Ma)), including skeletogenesis4, reef building5 and macroscopic 
predation6. Body fossils of late Ediacaran macro-organisms include 
at least some early animals3, but crucially, most plausible claims 
for metazoans lie within the diploblasts rather than the Bilateria3. 
Kimberella, which is potentially a stem mollusc7, is a notable excep-
tion, but some authors suggest that it can only be reliably considered 
as a member of total group Bilateria3.

Our understanding of early animal evolution is complemented 
by ichnological investigations of latest Ediacaran to Ordovician 
strata1,2,8. Diverse ichnofossil assemblages in the earliest Cambrian 
place an important constraint on the tempo of bilaterian origins, as 
they indicate that some groups, including total group panarthropods 

and priapulid-like scalidophorans2,9, were globally distributed and 
abundant by this point. The major bilaterian divergences (that is, 
the protostome–deuterostome and ecdysozoan–lophotrochozoan 
divergences) must therefore pre-date the Ediacaran–Cambrian 
boundary. So far, the Ediacaran trace fossil record has provided lim-
ited insight into these early divergences. Most Ediacaran ichnofossils 
are either surface traces or simple under-mat burrows, created either 
on or immediately beneath matgrounds10. Such traces extend back 
to ~565 Ma11,16, including inferred grazing traces (Kimberichnus12) 
associated with the body fossil Kimberella, vertical adjustment 
structures in response to seafloor aggradation13 and, in the latest 
Ediacaran, shallow vertical burrows10 and treptichnid-like burrows 
just below the Ediacaran–Cambrian boundary14. Most Ediacaran 
ichnofossils are considered to have been made by total group  
bilaterian15 or cnidarian13,16 eumetazoans. Notwithstanding con-
troversial claims for bioturbation and complex burrows ~553 Ma17, 
widespread substrate-penetrating burrows capable of significant 
sediment mixing do not appear until close to the Precambrian–
Cambrian boundary14.

Molecular clock analyses predict an earlier, pre-Ediacaran ori-
gin for the Metazoa and Eumetazoa, and an early Ediacaran origin 
for Bilateria, Protostomia and Deuterostomia18. Palaeontological 
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The evolutionary events during the Ediacaran–Cambrian transition (~541 Myr ago) are unparalleled in Earth history. The fossil 
record suggests that most extant animal phyla appeared in a geologically brief interval, with the oldest unequivocal bilaterian 
body fossils found in the Early Cambrian. Molecular clocks and biomarkers provide independent estimates for the timing of 
animal origins, and both suggest a cryptic Neoproterozoic history for Metazoa that extends considerably beyond the Cambrian 
fossil record. We report an assemblage of ichnofossils from Ediacaran–Cambrian siltstones in Brazil, alongside U–Pb radioiso-
topic dates that constrain the age of the oldest specimens to 555–542 Myr. X-ray microtomography reveals three-dimensionally 
preserved traces ranging from 50 to 600 μ m in diameter, indicative of small-bodied, meiofaunal tracemakers. Burrow morphol-
ogies suggest they were created by a nematoid-like organism that used undulating locomotion to move through the sediment. 
This assemblage demonstrates animal–sediment interactions in the latest Ediacaran period, and provides the oldest known 
fossil evidence for meiofaunal bilaterians. Our discovery highlights meiofaunal ichnofossils as a hitherto unexplored window for 
tracking animal evolution in deep time, and reveals that both meiofaunal and macrofaunal bilaterians began to explore infaunal 
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support for these suggestions is limited to purported body fossils 
of sponges19 and demosponge biomarkers20. A considerable gap 
therefore remains between the fossil record of the late Ediacaran 
and molecular clock estimates for deep splits in the animal tree, for 
example the origin of Metazoa and Eumetazoa3. Assuming that con-
temporary molecular clock analyses yield accurate, if imprecise18, 
node ages for animal divergences, a small body size and concomi-
tant limited fossilization potential21 could reconcile these discordant 
records of animal evolution (but see ref. 22).

The small body size of the ancestral bilaterian is supported by 
recent phylogenomic analyses of deep animal relationships, with 
acoel flatworms and xenoturbellids (Xenacoelomorpha) being a 
sister group to all remaining bilaterians (Nephrozoa)23, and small-
bodied spiralian taxa (the ‘Platyzoa’) recognized as a paraphyletic 
grade with respect to macroscopic trochozoans24. This suggests that 
early bilaterians and spiralians were small bodied, possibly meiofau-
nal, and moved using ciliary gliding.

Meiofauna comprises all organisms between 32 and 1,000 μ m in 
size that inhabit pore-water-rich sediments in freshwater to deep-
marine environments25. Modern meiofaunal communities include 
animals, foraminifera and some ciliates, and contribute significantly 
to sediment bioturbation and bioirrigation26,27. The meiofauna can be 
divided into permanent members (that is, animals with organisms of a 
small size adapted and restricted to the meiofaunal, interstitial realm) 
and temporary meiofauna (for example, the larvae of macrobiota)25.

Despite its ecological and evolutionary importance, the deep-
time record of the meiofauna has received little discussion, prin-
cipally due to the low preservation potential of both meiofaunal 
body fossils and traces. Although meiofaunal burrows (some-
times described as burrow mottling or cryptobioturbation) have 
occasionally been reported from Cambrian to Recent sediments26, 
they are rarely subjected to detailed study. Body fossil discoveries 
also reveal organisms inhabiting meiofaunal niches within Early 
Cambrian communities, highlighting the potential for their preser-
vation within particular taphonomic windows28,29.

Here we report a new assemblage of meiofaunal ichnofossils from 
siltstones of the Ediacaran–Cambrian Tamengo and Guaicurus for-
mations, Corumbá Group, central western Brazil (Fig. 1). The age of 
the assemblage is constrained by U–Pb (zircon) isotope dilution ther-
mal ionization mass spectrometry (ID-TIMS) dating of inter-stratified 
ash beds. The dates indicate that the Tamengo Formation specimens 
are late Ediacaran in age, and those in the Guaicurus Formation lie 
close to the Ediacaran–Cambrian boundary. Our results constitute the 
oldest documented meiofaunal burrows in the geological record, plac-
ing a constraint on the minimum age of this key ecological innovation.

The Corumbá Group
The Corumbá Group, part of the Southern Paraguay Belt, is a 
~600-m-thick sedimentary unit comprising carbonate and silici-
clastic facies deposited on a stable continental margin following a 
late Neoproterozoic rift event30,31 (Fig. 1). The lowermost units of 
the Corumbá Group are the terrigenous Cadieus and Cerradinho 
formations, which are probably contemporaneous with the Puga 
Formation of the Amazon Craton30 (and thus possibly Marinoan-
equivalent). Stromatolitic dolostones and phosphorites of the 
Bocaina Formation lie above those siliciclastic units. The lower 
Corumbá Group is unconformably overlain by the fossiliferous dark 
organic-rich marls and limestones of the Tamengo Formation, and 
laminated siltstones of the Guaicurus Formation31 (Fig. 1). A breccia 
horizon marks the base of the Tamengo Formation in several sec-
tions, and is concordantly overlain by interbedded mudstones and 
grainstones deposited in a shallow platform setting. The laminated 
calcareous siltstones of the Guaicurus Formation indicate deposi-
tion in a setting with low hydrodynamic energy, probably below 
fair-weather wave base. The sedimentary succession has previously 
yielded macroscopic body fossils including the scyphozoan-like 

Corumbella werneri and Paraconularia4, along with Cloudina lucia-
noi, in the upper Tamengo Formation, and possible vendotaenid 
algae (Eoholynia) in the lowermost Guaicurus Formation31 (Fig. 1).

Results
U–Pb geochronology. Three volcanic tuff horizons were sampled 
within the Corumbá Group (Fig.  1) and zircons from these tuffs 
were dated using U–Pb chemical abrasion ID-TIMS (CA-ID-TIMS) 
methods (see Methods for full methodology). An ash bed from the 
top of the Bocaina Formation (from Porto Morrinhos; Fig. 1) yielded 
a weighted mean 206Pb/238U date of 555.18 ±  0.30/0.34/0.70 Ma 
(mean square weighted deviation (MSWD)  =  1.6, n =  8 out of 8) 
(Supplementary Fig. 6; Supplementary Tables 3 and 4), which we 
consider to approximate the age of the sample. This date provides 
a maximum age for the overlying Tamengo Formation. Two fur-
ther ash beds (samples 1.08 and 1.04) were collected from the top 
of the Tamengo Formation. Zircons from sample 1.04 yielded U–Pb 
CA-ID-TIMS dates that ranged from 541.2 to 548 Ma, with a clus-
ter of the five youngest concordant analyses defining a weighted 
mean 206Pb/238U date of 541.85 ±  0.75/0.77/0.97 Ma (MSWD =  3.3, 
n =  5 out of 11) (Supplementary Fig.  6; Supplementary Tables  3 
and 4) that we consider approximates the age of the sample. 
Zircons from sample 1.08 yielded U–Pb CA-ID-TIMS dates that 
ranged from 537 to 552 Ma, with a coherent cluster of four con-
cordant analyses (Fig.  2) defining a weighted mean 206Pb/238U 
date of 542.37 ±  0.28/0.32/0.68 Ma (MSWD =  0.68, n =  4 out of 8) 
(Supplementary Fig. 6; Supplementary Tables 3 and 4). We consider 
the single significantly older data point to result from the incorpo-
ration of xenocrystic zircon, perhaps during eruption. The three 
younger 206Pb/238U dates from sample 1.08 are considered to reflect 
Pb loss based on the observations that (1) they are non-overlapping; 
(2) the 207Pb/206Pb dates are similar to those that define the ~542 Ma 
population in both this sample and sample 1.04; and (3) the derived 
dates from both upper Tamengo Formation samples are consistent. 
Therefore 542.37 ±  0.28/0.32/0.68 Ma is taken to approximate the 
age of sample 1.08. The data from samples 1.04 and 1.08 indicate an 
age of ~542 Ma for the top of the Tamengo Formation, constraining 
the age of the upper Corumbá Group as late Ediacaran (uppermost 
Bocaina–Tamengo formations, 555–542 Ma) to earliest Cambrian 
(lower Guaicurus Formation, < 542 Ma). The current accepted age 
for the base of the Cambrian is 541.00 ±  0.29 Ma32 (level Y uncer-
tainty, excluding the systematic 238U decay constant uncertainty).

Trace fossils of the Guaicurus and Tamengo formations. Three-
dimensionally mineralized fossils were collected from approxi-
mately 30–40 m above the base of the Tamengo Formation at two 
levels in the Ladário section (Fig. 1), and from a single horizon and 
loose material ~7 m above the base of the Guaicurus Formation from 
the Laginha Mine section (Fig. 1). The latter horizon is < 542.0 Ma in 
age based on the U–Pb CA-ID-TIMS data presented above.

Bi-lobed horizontal, iron-oxide-filled ichnofossils occur in a sin-
gle hand specimen, preserving part and counterpart, derived from 
float in the lower Guaicurus Formation (Fig. 2c,d). The burrows are 
straight to curving, approximately 2 mm in width, and exhibit dor-
sal and ventral median depressions, creating the bi-lobed appear-
ance typical of Didymaulichnus lyelli33.

Small sub-horizontal structures occur in abundance in both the 
lower Guaicurus (Fig. 2) and Tamengo formations (Fig. 3). These 
consist of irregular multi-tiered networks connected by short 
sub-vertical shafts. In bedding plane view, the fossils are dark in 
colour relative to the matrix, forming dense assemblages compris-
ing sinuous structures with rare dichotomous branches (Fig. 2a,b). 
The fossils are filled with oxidized iron-rich minerals with fram-
boidal morphologies, and authigenic microcrystalline calcite 
(Fig. 2e–h). Framboids suggest that the fossils were originally pyri-
tized, and subsequently oxidized to iron oxides and oxyhydroxides  
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(Supplementary Fig.  1). The presence of calcite and framboids 
throughout the infill suggests that the framboids and calcite formed 
at a similar time.

The density contrast between the fossils and the host rock allows 
the traces to be visualized through X-ray microtomography (μ CT; 
Figs.  3–5), revealing a dense ichnofabric (Figs.  3e–g, 4e,f and 5f). 
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Fig. 1 | Locality map and stratigraphic column of the Ediacaran–Early Cambrian Corumbá Group: composite section compiled from logs in the Corumbá–
Ladário region, Mato Grosso do Sul State, Brazil. a,b, Locality map (a) and stratigraphic column (b). Dates are derived from this study. White stars 
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Although many of the burrows are restricted to single horizons, some 
cut across up to ~7 mm of stratigraphic thickness, indicating inter-
stratal burrowing (Fig. 4g). Burrow diameters range from 45 to 573 µ m  
(Fig. 5g; mean =  193.2 µ m, n =  393). The Shapiro–Wilks test indicates 
these data are not drawn from a normal distribution (P <  0.01), and 
univariate Bayesian information criterion (BIC) analysis supports 
either a two- or three-component model. The lower limits of this  
distribution are probably dictated by the voxel size of the scans and 
so it is possible that the smallest size fractions are omitted.

Discussion
The Guaicurus Formation assemblage is dated at <  541.85 ±  0.77 Ma 
and is broadly contemporaneous with the Ediacaran–Cambrian 
boundary32. The Tamengo Formation ichnofossils lie stratigraphi-
cally below our dated horizon of 542.37 ±  0.32 Ma, and are thus 
between 542 and 555 Ma in age (late Ediacaran). The presence of dif-
ferent size classes within the Corumbá Group data indicates different 
populations, further supporting a biological, rather than abiological, 

mode of formation (see Supplementary Information). As the struc-
tures are preserved as discrete, rounded authigenically mineralized 
tubes, they cannot be shrinkage features such as synaeresis cracks.

A body fossil explanation for these structures is considered 
unlikely as authigenically mineralized body fossils (for example, 
algal filaments) would be expected to be confined to discrete hori-
zons in finely laminated sediments rather than crossing multiple 
horizons. Some Ediacaran body fossils, such as the simple conical 
Conotubus, can grow through sedimentary laminae if felled34. In 
contrast, the branching ichnofossils of the Guaicurus Formation are 
~0.5 mm wide and cross up to ~7 mm of stratigraphic thickness. 
The contemporaneous (Fig. 1) vendotaenid alga Eoholynia corum-
bensis is superficially similar in size and morphology to the ichno-
fossils described herein31. Two factors make algal origins for the 
fossils we describe unlikely: mode of preservation, and morphology. 
First, in contrast to these authigenically mineralized trace fossils, 
Eoholynia specimens in the Corumbá Group are preserved as two-
dimensional (2D) carbon films with some accessory oxides (possi-
bly after pyrite) (Supplementary Fig. 5d–f). A comprehensive study 
of early Palaeozoic non-biomineralized macroalgal taxa found that 
2D compression (with some accessory mineralization) is the only 
taphonomic pathway through which macroalgae fossilize during 
this time interval35, consistent with the algal affinities of Eoholynia 
and similar fossils. Although taphonomic mode should not be con-
flated with affinity, the absence of three-dimensionally pyritized 
algae from similar localities of the same age renders an algal affin-
ity for the proposed ichnofossils unlikely. Secondly, Eoholynia have 
straight branches (rather than undulating/sinusoidal) that taper 
after regular (dichotomous to polychotomous) branching from a 
distinct main branch and have rounded terminal structures inter-
preted as sporangia31. Polychotomous branching, tapering and 
rounded termini are not present in the ichnofossils.

Iron oxides form a patina on the outer margin of some larger 
endichnial burrows, possibly reflecting pyritization of a mucous bur-
row lining36 (Fig. 2e). 3D preservation as authigenic pyrite and calcite 
suggests that the burrows were open prior to burial and compaction, 
and were not backfilled by the tracemaker. Preservation in almost 
undistorted full relief is uncommon in mudstones in the absence of 
burrow fill, except where significant early diagenesis and dewater-
ing occurs before burial36. Similar sized burrows of modern nema-
todes possess a polysaccharide-rich mucous burrow lining37, which 
would provide a locus for the microbial reduction of sulfate from 
seawater within the burrows, causing pyrite precipitation and con-
sequently burrow preservation38: a mechanism we consider to have 
been responsible for preservation of the Corumbá Group structures.

The poorly organized, vertically stacked, network-like galler-
ies connected by short oblique shafts are typical of the ichnoge-
nus Multina. A combination of size range and irregularly sinuous 
gallery morphology allows attribution to M. minima39. The small 
burrow diameter, originally circular cross-sections and lack of 
dorso-ventral differentiation characteristic of the Corumbá Group 
Multina are consistent with a narrow-bodied vermiform trace-
maker. It is unclear how many infaunalization events are repre-
sented by the assemblages reconstructed in 3D (for example, 
Fig.  5e), but the presence of continuous oblique shafts between 
levels suggests that the burrows remained open throughout the life 
of the tracemaker.

Animal burrowing is typically achieved either (1) by peristal-
sis (for example, in annelids like the Arenicolidae); (2) through 
the extension and retraction of an introvert (for example, loric-
iferans, kinorynchs, sipunculans); or (3) by a combination of the  
two (for example, priapulids)40. These mechanisms compact sedi-
ment laterally at the burrow margins41, but such compaction is 
absent in the Guaicurus traces (Fig. 2e–g). Compression burrow-
ing is similar and involves the tracemaker forcing its way through 
the sediment, compacting it at the margins42. Trochozoan taxa 
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Fig. 2 | Hand specimens and scanning electron microscopy 
photomicrographs of M. minima and D. lyelli traces from the Guaicurus 
Formation, Laginha Mine, Mato Grosso do Sul State, Brazil. a, Hand 
specimen of small M. minima, OUMNH ÁU.4c. b, Bedding plane view of 
M. minima (inset of a). c,d, Bedding plane view of bi-lobed D. lyelli (part 
and counterpart, OUMNH ÁU.2). e–h, Scanning electron microscopy 
photomicrographs of bedding-normal polished thin sections of samples 
containing M. minima. Framboidal iron oxide (originally pyrite) burrow fills 
are clearly observed. Burrows in e–g are viewed in cross-section through 
the burrow diameter. h, A burrow in lateral view.
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such as annelids, molluscs and nemerteans can be excluded as 
potential tracemakers because the minimum diameter M. minima  
resolved in the Guaicurus Formation is ~45 μ m; significantly 
smaller than recently hatched trochophore larvae, which are 
approximately 100 μ m in diameter and pelagic, not endobenthic43. 
Annelids can be further excluded as potential tracemakers as the 
smallest annelid eggs (50–70 μ m diameter43) exceed the diameter 
of the smallest traces.

Early spiralians may have been small bodied, with taxa such 
as gastrotrichs and gnathiferans recovered as a paraphyletic grade 
in phylogenomic analyses24. Many spiralian meiofaunal groups 
move using ciliary gliding, which is unlikely to have formed con-
tinuous open burrows or achieved the sediment movement respon-
sible for interstratal burrowing. Mucociliary gliding by extant  

platyhelminths44 creates traces similar in gross morphology to 
horizontal Ediacaran trails, and so members of the total groups of 
Bilateria, Xenacoelomorpha and Nephrozoa are candidate trace-
makers for late Ediacaran surficial traces. Ciliary gliding has prob-
ably been independently lost multiple times within Nephrozoa (for 
example, Ecdysozoa, which lack external ciliation). Ciliary gliding 
is retained in some macroscopic spiralians, including Nemertea, 
Platyhelminthes and molluscan classes in which the foot is used in 
locomotion, such as gastropods. Nevertheless, ciliary gliding was 
the probable locomotory mechanism for the last common ances-
tor of both Bilateria and Nephrozoa. Ciliary gliding is unlikely to 
produce open burrows in fine-grained sediments and in the meio-
fauna it is most commonly used by organisms that live in interstitial 
spaces between sand grains.
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Fig. 3 | Photographs and CT volume renders of M. minima burrows from the Ediacaran Tamengo Formation, Ladário, Mato Grosso do Sul State, Brazil.  
a, Representative hand specimen of Tamengo Formation samples, specimen GPIE 11048b. b–d, Oxidized burrows with sub-horizontal trajectories, viewed 
in plan view on a bedding surface, GPIE-11048b (b), GPIE-11004b (c) and GPIE-11005a (d). Note that these specimens have been heavily weathered.  
e–g, Volume renders of CT slice data through the burrows constructed using the program Drishti. The burrows show curved, sub-horizontal trajectories, 
and are mostly < 100 µ m in diameter.
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Free-living nematodes use undulating motions to move through 
fine-grained soft sediments, the low viscosity of which limits them 
to small body size45. Organisms without body appendages possessing  
only longitudinal muscles, such as nematodes46, are restricted 
to sinusoidal locomotion as they lack the antagonistic circular 
muscles necessary for peristalsis. Nematodes are common biotur-
bators of modern muddy sediments and can create open mucus-
lined burrows of a size range comparable to that of the Brazilian  
M. minima (Fig. 5g). Similar but slightly larger M. minima, poten-
tially attributable to marine nematodes, have been described from 
the Cambrian and Ordovician47,48, but do not preserve the tiered 
networks of M. minima we report. Burrow morphologies pro-
duced by extant or extinct nematomorphs are unknown.

The size and morphology of the meiobenthic Multina is consis-
tent with a nematoid-like tracemaker that lacked body appendages 
and did not move by peristalsis or ciliary gliding. As the ancestral 
bilaterian and nephrozoan moved using ciliary gliding, this burrow-
ing style suggests a tracemaker that phylogenetically postdates the 
nephrozoan crown node. These burrows may potentially provide an 
age constraint for total group Nematoida (that is, nematodes plus 
nematomorphs). This is consistent with Early Cambrian body fos-
sils, which include representatives of most ecdysozoan phyla, along 
with meiofaunal groups28. Total group nematoids are therefore likely 
to have diverged from their closest living relatives by at least 520 Ma, 
regardless of their controversial position within Ecdysozoa49. An 
alternative interpretation is that these trace fossils were produced 

by a stem group ecdysozoan that phylogenetically pre-dates the evo-
lution of an introvert but had already evolved a chitinous cuticle 
and thus was unable to use ciliary gliding. A similar body plan is 
present in larval insects, which produce freshwater and terrestrial 
Cochlichnus burrows and move in a similar fashion to nematodes10.

The Proterozoic–Phanerozoic biological radiation and the ori-
gin of the meiofauna. The Corumbá Group trace fossils place an 
important latest Ediacaran (541–555 Ma) minimum constraint 
on the origin of meiofaunal animals and their interactions with 
soft substrates. Meiofauna are ubiquitous in both modern marine 
and freshwater environments, and their origin in deep time has 
been often discussed21,22 but little explored from an evidential 
palaeontological perspective. Extant meioendobenthic organ-
isms are particularly important contributors to biogeochemical 
cycling, microbial ecology and ecosystem productivity, especially 
in muddy sediments27,37. Multiple studies discuss the trace fossil 
record of macrofaunal behaviour from the late Ediacaran onwards, 
its postulated impacts on sediment geochemistry and benthic ecol-
ogy, and its role in ecosystem engineering and ecological escala-
tion1,2,8. Constraining the deep time origins of a meiofaunal mode 
of life may be equally important for understanding the biological 
and chemical evolution of marine sedimentary environments. It is 
unlikely that the meiofaunal burrowing described here had a sub-
stantial impact on substrate mixing, due to its small depth of pene-
tration leaving sedimentary laminae largely undisturbed (Fig. 4e).
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d e
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f

Fig. 4 | CT slices and 3D reconstructions of a burrow assemblage in specimen ouMNH Áu.3 from the Early Cambrian/latest Ediacaran Guaicurus 
Formation. a–c, Representative CT X-ray slices through the specimen in plan view, showing burrows in light grey against a dark grey rock matrix. Scale bar 
in a also applies to b and c. d, 3D render of the specimen produced using Blender, showing individual burrows in different colours. e, The same CT data 
volume rendered in Drishti, with burrows in gold. f, Drishti volume render normal to bedding, showing interstratal burrowing.
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Our geochronological framework places temporal constraints 
on the first appearance of several biological and ecological 
innovations in the South American fossil record, and permits  
correlation of these events to other dated sections worldwide 
(Fig. 6). Biomineralizing macro-organisms (Cloudina), annulated 
tubular macrofossils (Corumbella) and meiofaunal burrowers  
all appear in the Corumbá sections after 555 Ma, but before 
542 Ma. The temporal range for the macrofossils corresponds 
well to similar latest Ediacaran fossil assemblages, some of  
which record evidence for predation50, a decline in Ediacaran soft- 
bodied macro-organisms51 and the appearance of macroscopic 

burrows10,17 in the interval immediately preceding the Ediacaran–
Cambrian boundary. Taken together, these records bear witness 
to several major biological innovations among eumetazoans, 
indicating that this key interval may offer significant scope for 
unravelling the intricacies surrounding the early stages of bilat-
erian evolution.

Methods
U–Pb geochronology. U–Pb dates were obtained by the CA-ID-TIMS method 
on selected single zircon grains (Supplementary Tables 3 and 4), extracted from 
an aliquot of samples ‘Porto Morrinhos’, ‘1.04’ and ‘1.08’. Zircon grains were 
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Fig. 5 | Specimen ouMNH Áu.4/p1 from the Guaicurus Formation from which burrow measurement data were obtained. a, Hand specimen from 
the Laginha Mine section, plan view. b, Drishti volume render of 3D CT scan data, plan view. c,d, Individual CT slices in plan view, from which burrow 
measurements were obtained via comparison of 3D volume render to determine the maximum diameter of each burrow. Scale bar as in b. e, The Drishti 
volume render in b in lateral view. f, Individual burrow morphologies extracted from the volume render in b. g, Histogram plotting burrow width  
against frequency.
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isolated from the rock samples using standard magnetic and density separation 
techniques, and annealed in a muffle furnace at 900 °C for 60 h in quartz beakers. 
Zircon crystals from sample Porto Morrinhos have aspect ratios varying from 
~2 to ~5 and are typically 150 to 300 μ m in their longest dimension, and often 
contained a medial melt inclusion typical of volcanic zircon. Zircon from samples 
1.04 were smaller, with the long dimension of the order of 50 to 100 μ m,  
with lower aspect ratios (~2) and were doubly terminated. Zircon from samples 
1.08 had aspect ratios ranging from 2 to 4, long dimension of the order of 100 
to 200 μ m and were doubly terminated. No cathodoluminescence imaging was 
undertaken due to the small size of the zircons, and because the presence of 
medial melt inclusions and the general external morphologies were indicative 
of inherited cores not being present. Zircons selected for analyses based on 
external morphology were transferred to 3 ml Teflon PFA beakers, washed 
in dilute HNO3 and water, and loaded into 300 μ l Teflon PFA microcapsules. 
Fifteen microcapsules were placed in a large-capacity Parr vessel, and the crystals 
partially dissolved in 120 μ l of 29 M HF for 12 h at 180 °C. The contents of each 
microcapsule were returned to 3 ml Teflon PFA beakers, the HF removed and 
the residual grains immersed in 3.5 M HNO3, ultrasonically cleaned for an hour, 
and fluxed on a hotplate at 80 °C for an hour. The HNO3 was removed and the 
grains were rinsed twice in ultrapure H2O before being reloaded into the same 
300 μ l Teflon PFA microcapsules (rinsed and fluxed in 6 M HCl during crystal 
sonication and washing) and spiked with the EARTHTIME mixed 233U–235U–205Pb 
tracer solution (ET535). These chemically abraded grains were dissolved in 
Parr vessels in 120 μ l of 29 M HF with a trace of 3.5 M HNO3 at 220 °C for 60 h, 
dried to fluorides and then re-dissolved in 6 M HCl at 180 °C overnight. U and 
Pb were separated from the zircon matrix using an HCl-based anion exchange 
chromatographic procedure, eluted together and dried with 2 μ l of 0.05 N H3PO4. 
Pb and U were loaded on a single outgassed Re filament in 5 μ l of a silica gel/
phosphoric acid mixture53, and U and Pb isotopic measurements made on a 
Thermo Triton multi-collector thermal ionization mass spectrometer equipped 
with an ion-counting secondary electron multiplier (SEM) detector. Pb isotopes 

were measured by peak-jumping all isotopes on the SEM detector for 100 to 150 
cycles. Pb mass fractionation was externally corrected using a mass bias factor of 
0.14 ±  0.03% per mass unit determined via measurements of 202Pb/205Pb (ET2535)-
spiked samples analysed during the same experimental period. Transitory isobaric 
interferences due to high-molecular-weight organics, particularly on 204Pb, 
disappeared within approximately 30 cycles or earlier, and ionization efficiency 
averaged 104 cps pg−1 of each Pb isotope. Linearity (to ≥ 1.4 ×  106 cps) and the 
associated deadtime correction of the SEM detector were monitored by repeated 
analyses of NBS982, and have been constant since installation in 2006. Uranium 
was analysed as UO2 +  ions in static Faraday mode on 1012 Ω  resistors for 150 to 
200 cycles, and corrected for isobaric interference of 233U18O16O on 235U16O16O 
with an 18O/16O ratio of 0.00206. Ionization efficiency averaged 20 mV ng−1 of each 
U isotope. U mass fractionation was corrected using the known 233U/235U ratio of 
the ET2535 tracer solution.

We used the ET535 tracer solution54,55 and U decay constants recommended 
in ref. 56. A value of 137.818 ±  0.045 was used for the 238U/235Uzircon based on 
the work of ref. 57. 206Pb/238U ratios and dates were corrected for initial 230Th 
disequilibrium using a Th/Umagma =  3 ±  1 resulting in an increase in the 206Pb/238U 
dates of ~0.09 Myr. All common Pb in analyses was attributed to laboratory blank 
and subtracted based on the measured laboratory Pb isotopic composition and 
associated uncertainty. U blanks were estimated at 0.1 pg, based on replicate total 
procedural blanks.

Here, the date uncertainties reporting is as X/Y/Z and reflects the following 
sources: (X) analytical, (Y) analytical +  tracer solution and (Z) analytical +  tracer 
solution +  decay constants. The X uncertainty is the internal error based on only 
analytical uncertainties, including counting statistics, subtraction of tracer solution, 
and blank and initial common Pb subtraction. It is given at the 2σ  confidence 
interval. This error should be considered when comparing our dates with 206Pb/238U 
dates from other laboratories that used the same EARTHTIME tracer solution 
or a tracer solution that was cross-calibrated using related gravimetric reference 
materials. The Y uncertainty includes uncertainty in the tracer calibration and 

538540542544546548550552554556558560562564566568570

Ediacaran Cambrian

Ash bed age ± age uncertainty (2σ),
number refers to cited reference. 
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should be used when comparing our dates with those derived from laboratories 
that did not use the same EARTHTIME tracer solution or a tracer solution that was 
cross-calibrated using relatable gravimetric reference material. The Z uncertainty 
includes the above in addition to uncertainty in the 238U decay constant56. This 
uncertainty level should be used when comparing our dates with those derived 
from other decay schemes (for example, 40Ar/39Ar, 187Re–187Os).

CT. Four individual hand specimens were scanned using Nikon XTH-225 μ CT  
scanners at the Natural History Museum (London), and the Life Sciences 
Building, University of Bristol. X-rays were generated using a tungsten target. Scan 
parameters are provided in the Supplementary Information.

Following μ CT scanning, the data were imported into the program Drishti. 
We used this program both to volume render the data following the methods in 
ref. 58 and to reslice the volumes to create a TIFF stack of images approximately 
parallel to bedding. The data were also segmented using the SPIERS software 
suite59 following the methods of ref. 60, exported as stereolithography meshes, 
and then imported into the open source raytracer Blender40. In Blender, 
the mesh of the surface was rendered partially transparent, and the mesh 
encompassing all burrows was split into its component islands, allowing them to 
be coloured separately.

Burrow measurements. No statistical methods were used to predetermine sample 
size. Burrow measurements were obtained using ImageJ61. Measurements of 
burrow diameter were taken from individual slices from specimen OUMNH ÁU.3, 
to characterize the size frequency distribution of the trace fossils (Fig. 5g). Burrows 
were measured from approximately bedding-parallel µ CT slices at maximum 
burrow width. This was preferred over systematically measuring burrows from a 
sample of slices, as such a method would not necessarily sample burrows at their 
maximum diameter, and consequently would skew the size frequency distribution 
towards a smaller mean diameter. The smallest burrows observed in μ CT slices 
are approximately 2 pixels (~40 μ m) in diameter, and are thus at the limit of scan 
resolution. A Shapiro–Wilks test and BIC analysis (using the R package mclust62) 
were used to determine population structure in the measurement data63.

Data availability. U–Pb isotopic data used in this study are available in 
the Supplementary Information. CT data are freely available at Zenodo (doi: 
10.5281/zenodo.842847). All specimens analysed are held at the University of Sao 
Paulo and Oxford University Museum of Natural History.
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