5,891 research outputs found

    Constraint Damping in First-Order Evolution Systems for Numerical Relativity

    Get PDF
    A new constraint suppressing formulation of the Einstein evolution equations is presented, generalizing the five-parameter first-order system due to Kidder, Scheel and Teukolsky (KST). The auxiliary fields, introduced to make the KST system first-order, are given modified evolution equations designed to drive constraint violations toward zero. The algebraic structure of the new system is investigated, showing that the modifications preserve the hyperbolicity of the fundamental and constraint evolution equations. The evolution of the constraints for pertubations of flat spacetime is completely analyzed, and all finite-wavelength constraint modes are shown to decay exponentially when certain adjustable parameters satisfy appropriate inequalities. Numerical simulations of a single Schwarzschild black hole are presented, demonstrating the effectiveness of the new constraint-damping modifications.Comment: 11 pages, 5 figure

    Making use of geometrical invariants in black hole collisions

    Full text link
    We consider curvature invariants in the context of black hole collision simulations. In particular, we propose a simple and elegant combination of the Weyl invariants I and J, the {\sl speciality index} S{\cal S}. In the context of black hole perturbations S\cal S provides a measure of the size of the distortions from an ideal Kerr black hole spacetime. Explicit calculations in well-known examples of axisymmetric black hole collisions demonstrate that this quantity may serve as a useful tool for predicting in which cases perturbative dynamics provide an accurate estimate of the radiation waveform and energy. This makes S{\cal S} particularly suited to studying the transition from nonlinear to linear dynamics and for invariant interpretation of numerical results.Comment: 4 pages, 3 eps figures, Revte

    Effect of tomato variety, cultivation, climate and processing on Sola l 4, an allergen from Solanum lycopersicum

    Get PDF
    Tomatoes (Solanum lycopersicum) are one of the most consumed vegetables worldwide. However, tomato allergies in patients suffering from birch pollen allergy occur frequently. Due to highly similar protein structures of the tomato allergen Sola l 4 and the major birch pollen allergen Bet v 1, patients cross-react with allergenic proteins from tomato as well as other fruits or vegetables. The aim of this study was to quantify Sola l 4 in various tomatoes differing in color, size and shape for identification of varieties with a reduced allergen level. Therefore, an indirect competitive ELISA using a specific polyclonal Sola l 4 antibody was developed. In addition, two varieties, both cultivated either conventionally or organically and furthermore dried with different methods, were analyzed to investigate the influence of the cultivation method and processing techniques on Sola l 4 level. Within 23 varieties, Sola l 4 content varied significantly between 0.24 and 1.71 μg Sola l 4/g FW. The tomato cultivars Rugantino and Rhianna showed the significantly lowest level, whereas in cultivars Farbini and Bambello the significantly highest concentration was determined. Drying of tomatoes in the oven and by sun resulted in a significant decrease. The thermal instability was verified for the recombinant Sola l 4 emphasizing the results for the native protein in dried tomato samples. Overall, the Sola l 4 content is cultivar-dependent and no correlation between color and Sola l 4 amount was found. During the drying process of tomatoes Sola l 4 level was significantly reduced due to thermal instability. Growing conditions have a minor effect whereas seasonal effects show a more pronounced impact. These findings could extend the knowledge about the allergen level of different tomato varieties and may help to improve food safety to potentially increase the life quality of patients suffering from birch pollen allergy

    Sparse spectral-tau method for the three-dimensional helically reduced wave equation on two-center domains

    Get PDF
    We describe a multidomain spectral-tau method for solving the three-dimensional helically reduced wave equation on the type of two-center domain that arises when modeling compact binary objects in astrophysical applications. A global two-center domain may arise as the union of Cartesian blocks, cylindrical shells, and inner and outer spherical shells. For each such subdomain, our key objective is to realize certain (differential and multiplication) physical-space operators as matrices acting on the corresponding set of modal coefficients. We achieve sparse banded realizations through the integration "preconditioning" of Coutsias, Hagstrom, Hesthaven, and Torres. Since ours is the first three-dimensional multidomain implementation of the technique, we focus on the issue of convergence for the global solver, here the alternating Schwarz method accelerated by GMRES. Our methods may prove relevant for numerical solution of other mixed-type or elliptic problems, and in particular for the generation of initial data in general relativity.Comment: 37 pages, 3 figures, 12 table

    The last orbit of binary black holes

    Full text link
    We have used our new technique for fully numerical evolutions of orbiting black-hole binaries without excision to model the last orbit and merger of an equal-mass black-hole system. We track the trajectories of the individual apparent horizons and find that the binary completed approximately one and a third orbits before forming a common horizon. Upon calculating the complete gravitational radiation waveform, horizon mass, and spin, we find that the binary radiated 3.2% of its mass and 24% of its angular momentum. The early part of the waveform, after a relatively short initial burst of spurious radiation, is oscillatory with increasing amplitude and frequency, as expected from orbital motion. The waveform then transitions to a typical `plunge' waveform; i.e. a rapid rise in amplitude followed by quasinormal ringing. The plunge part of the waveform is remarkably similar to the waveform from the previously studied `ISCO' configuration. We anticipate that the plunge waveform, when starting from quasicircular orbits, has a generic shape that is essentially independent of the initial separation of the binary.Comment: 5 pages, 5 figures, revtex

    Computer classification of stop consonants in a speaker independent continuous speech environment

    Get PDF
    In the English language there are six stop consonants, /b,d,g,p,t,k/. They account for over 17% of all phonemic occurrences. In continuous speech, phonetic recognition of stop consonants requires the ability to explicitly characterize the acoustic signal. Prior work has shown that high classification accuracy of discrete syllables and words can be achieved by characterizing the shape of the spectrally transformed acoustic signal. This thesis extends this concept to include a multispeaker continuous speech database and statistical moments of a distribution to characterize shape. A multivariate maximum likelihood classifier was used to discriminate classes. To reduce the number of features used by the discriminant model a dynamic programming scheme was employed to optimize subset combinations. The top six moments were the mean, variance, and skewness in both frequency and energy. Results showed 85% classification on the full database of 952 utterances. Performance improved to 97% when the discriminant model was trained separately for male and female talkers

    A perturbative solution for gravitational waves in quadratic gravity

    Full text link
    We find a gravitational wave solution to the linearized version of quadratic gravity by adding successive perturbations to the Einstein's linearized field equations. We show that only the Ricci squared quadratic invariant contributes to give a different solution of those found in Einstein's general relativity. The perturbative solution is written as a power series in the β\beta parameter, the coefficient of the Ricci squared term in the quadratic gravitational action. We also show that, for monochromatic waves of a given angular frequency ω\omega, the perturbative solution can be summed out to give an exact solution to linearized version of quadratic gravity, for 0<ω<c/β1/20<\omega<c/\mid\beta\mid^{1/2}. This result may lead to implications to the predictions for gravitational wave backgrounds of cosmological origin.Comment: 9 pages, to appear in CQ

    The close limit from a null point of view: the advanced solution

    Get PDF
    We present a characteristic algorithm for computing the perturbation of a Schwarzschild spacetime by means of solving the Teukolsky equation. We implement the algorithm as a characteristic evolution code and apply it to compute the advanced solution to a black hole collision in the close approximation. The code successfully tracks the initial burst and quasinormal decay of a black hole perturbation through 10 orders of magnitude and tracks the final power law decay through an additional 6 orders of magnitude. Determination of the advanced solution, in which ingoing radiation is absorbed by the black hole but no outgoing radiation is emitted, is the first stage of a two stage approach to determining the retarded solution, which provides the close approximation waveform with the physically appropriate boundary condition of no ingoing radiation.Comment: Revised version, published in Phys. Rev. D, 34 pages, 13 figures, RevTe

    Accurate Evolutions of Orbiting Black-Hole Binaries Without Excision

    Get PDF
    We present a new algorithm for evolving orbiting black-hole binaries that does not require excision or a corotating shift. Our algorithm is based on a novel technique to handle the singular puncture conformal factor. This system, based on the BSSN formulation of Einstein's equations, when used with a `pre-collapsed' initial lapse, is non-singular at the start of the evolution, and remains non-singular and stable provided that a good choice is made for the gauge. As a test case, we use this technique to fully evolve orbiting black-hole binaries from near the Innermost Stable Circular Orbit (ISCO) regime. We show fourth order convergence of waveforms and compute the radiated gravitational energy and angular momentum from the plunge. These results are in good agreement with those predicted by the Lazarus approach.Comment: 4 pages, revtex4, 3 figs, references added, typos fixe

    Area Invariance of Apparent Horizons under Arbitrary Boosts

    Full text link
    It is a well known analytic result in general relativity that the 2-dimensional area of the apparent horizon of a black hole remains invariant regardless of the motion of the observer, and in fact is independent of the t=constant t=constant slice, which can be quite arbitrary in general relativity. Nonetheless the explicit computation of horizon area is often substantially more difficult in some frames (complicated by the coordinate form of the metric), than in other frames. Here we give an explicit demonstration for very restricted metric forms of (Schwarzschild and Kerr) vacuum black holes. In the Kerr-Schild coordinate expression for these spacetimes they have an explicit Lorentz-invariant form. We consider {\it boosted} versions with the black hole moving through the coordinate system. Since these are stationary black hole spacetimes, the apparent horizons are two dimensional cross sections of their event horizons, so we compute the areas of apparent horizons in the boosted space with (boosted) t=constant t = constant , and obtain the same result as in the unboosted case. Note that while the invariance of area is generic, we deal only with black holes in the Kerr-Schild form, and consider only one particularly simple change of slicing which amounts to a boost. Even with these restrictions we find that the results illuminate the physics of the horizon as a null surface and provide a useful pedagogical tool. As far as we can determine, this is the first explicit calculation of this type demonstrating the area invariance of horizons. Further, these calculations are directly relevant to transformations that arise in computational representation of moving black holes. We present an application of this result to initial data for boosted black holes.Comment: 19 pages, 3 figures. Added a new section and 2 plots along with a coautho
    corecore