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Accurate Evolutions of Orbiting Black-Hole Binaries without Excision
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(Received 9 November 2005; published 22 March 2006)

We present a new algorithm for evolving orbiting black-hole binaries that does not require excision or a
corotating shift. Our algorithm is based on a novel technique to handle the singular puncture conformal
factor. This system, based on the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein’s
equations, when used with a ‘‘precollapsed’’ initial lapse, is nonsingular at the start of the evolution
and remains nonsingular and stable provided that a good choice is made for the gauge. As a test case, we
use this technique to fully evolve orbiting black-hole binaries from near the innermost stable circular orbit
regime. We show fourth-order convergence of waveforms and compute the radiated gravitational energy
and angular momentum from the plunge. These results are in good agreement with those predicted by the
Lazarus approach.

DOI: 10.1103/PhysRevLett.96.111101 PACS numbers: 04.25.Dm, 04.25.Nx, 04.30.Db, 04.70.Bw

One of the most significant goals of numerical relativity
is to compute accurate gravitational waveforms from as-
trophysically realistic simulations of merging black-hole
binaries. The expectation of very strong gravitational wave
emission from the merger of two black holes and some of
the newest astrophysical observations, from supermassive
galactic nuclei just about to merge [1] to stellar size black-
hole binaries, make these systems one of the most extraor-
dinary astrophysical objects under study today. Binary-
black-hole mergers are expected not only to provide infor-
mation about the history and formation of the binary
system but also to provide important precise tests of
strong-field, highly dynamical relativity.

Motivated by the forthcoming observations of ground-
based gravitational wave detectors, such as the Laser
Interferometer Gravitational-Wave Observatory [2], and
by the next generation of space-based detectors, such as
the Laser Interferometer Space Antenna [3], the numerical
relativity community has dedicated a great deal of effort to
solving the binary-black-hole problem over the last few
decades. After the ‘‘binary-black-hole grand challenge,’’
[4] several new approaches have been pursued in the
attempt to produce stable three-dimensional (3D) numeri-
cal codes capable of evolving the full Einstein field equa-
tions in the absence of any symmetry. This includes the
introduction of new formulations of these equations and
the development of numerical techniques for accurate
evolutions of black-hole binaries, such as higher-order
finite differencing, spectral methods, and adaptive mesh
refinement (see Ref. [5], and references therein).

The calculation of the gravitational radiation emitted
from plunging black-hole binaries was pioneered through
the use of the Lazarus approach, which bridges numerical
relativity and perturbative techniques to extract approxi-
mate gravitational waveforms [6–8]. More recently, im-
portant progress has been made toward evolving orbiting
binary-black-hole spacetimes with the use of stable full 3D

numerical relativity codes using corotating gauge condi-
tions and singularity excision [9–11].

Here we present a novel technique for evolving orbiting
black holes based on puncture data. This technique does
not require a corotating shift or singularity excision. Most
importantly, we can produce accurate complete waveforms
from merging black-hole binaries.

In a previous paper, we presented techniques for suc-
cessfully performing numerical relativity simulations of
black-hole binaries with fourth-order accuracy [12]. Our
simulations are based on a new coding framework, LAZEV,
which is built on top of the CACTUS Computational Toolkit
[13]; this currently supports higher-order finite differenc-
ing for the Baumgarte-Shapiro-Shibata-Nakamura (BSSN)
formulation of Einstein’s equations [14–16] but is de-
signed to be readily applicable to a broad class of formu-
lations. Highly accurate evolutions can be achieved using
our unigrid higher-order finite-difference code along with a
nonuniform coordinate system, such as ‘‘Fisheye’’ [8], that
concentrates grid points in the central region containing the
black holes.

In the puncture approach [17], the metric on the initial
slice is given by [18] �ab � � BL � u�4�ab, where  BL �
1�

Pn
i�1 mi=�2ri� is the Brill-Lindquist conformal factor,

mi is the mass parameter of puncture i, ri is the coordinate
distance to puncture i, and u is finite on the punctures. If
the puncture positions are fixed throughout the evolution,
then the singular behavior in the metric is contained in  BL

and can, thus, be treated analytically. However, holding the
puncture fixed throughout the evolution leads to significant
coordinate distortions that tend to kill the run before a
common horizon forms.

We propose a method for evolving puncture type data
without fixing the puncture positions during the evolution.
Our method is based on the BSSN formulation. In the
BSSN system, one evolves a conformal metric ~�ab �
exp��4���ab which has unit determinant K � Ka

a , the
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conformal trace-free extrinsic curvature ~Aab �
exp��4���Kab � �abK=3�, the conformal exponent �,
and ~�i � �@j ~�ij. In order to regularize the system near
the puncture, we replace the BSSN exponent � [which has
an O�lnr� singularity at the puncture] with a new variable
� � exp��4�� that is C4 on the puncture. Additionally,
we modify the standard 1� log lapse and Gamma-driver
shift gauge conditions [19]. Our system is explicitly finite
on the initial slice. The evolution equations for this system
are [14–16,19]

@0 ~�ij � �2� ~Aij; (1)

@t� �
2
3���K � @a�

a� � �i@i�; (2)

@0
~Aij����DiDj���Rij�

TF���K ~Aij�2 ~Aik ~Akj�; (3)

@0K � �DiDi�� �� ~Aij ~Aij � 1
3K

2�; (4)

@t~�
i � ~�jk@j@k�i �

1
3 ~�ij@j@k�k � �j@j~�

i � ~�j@j�i

� 2
3
~�i@j�

j � 2 ~Aij@j�� 2��~�ijk ~Ajk

� 6 ~Aij@j��
2
3 ~�ij@jK�; (5)

where @0 � @t �L�, TF indicates that only the trace-free

part of the tensor is used, Rij � ~Rij � R
�
ij is given by

R�ij � �2 ~Di
~Dj�� 2~�ij ~Dk ~Dk�� 4 ~Di� ~Dj�

� 4~�ij ~Dk� ~Dk�; (6)

~R ij � �
1
2 ~�lm@l@m ~�ij � ~�k�i@j�~�

k � ~�k~��ij�k

� ~�lm�2~�kl�i
~�j�km � ~�kim~�klj�; (7)

Di is the covariant derivative with respect to �ij, and ~Di is
the covariant derivative with respect to ~�ij. ~�i is replaced
by�@j ~�ij in Eqs. (1)–(7) wherever it is not differentiated.
Note that Eqs. (2) and (5) give the @t derivatives of� and ~�i

rather than the @0 derivatives. Note that @i� �
�1=�4��@i� and @ij� �

1
4 ��@ij�=�� @i�@j�=�

2� are
singular on the puncture; as a result, we identify several
potentially singular terms in Eqs. (1)–(5). In Eq. (3), the
term DiDj� can be expressed in terms of @i�@j��
nonsingular terms. However, this term is multiplied by �,
and the product is C3 on the puncture. Additionally, the
@i@j� terms (from Rij) are multiplied by �� and are, thus,
C2 on the puncture. If the lapse �� r2 on the puncture (as
is our choice), then ~Aab isC4 on the puncture (provided that
it is C4 on the initial slice). However, in Eq. (5), we find the
singular term � ~Aij@i�. With our choice of initial data,
~Aij � r2, and, thus, ~�i is C0 on the puncture. We can
then choose an initial lapse � �  �2

BL which is O�r2� on
the puncture. With this choice of lapse, ~�i evolves to a
function that is C2 on the puncture. However, ~�i will
remain well behaved only if the lapse condition maintains

this O�r2� behavior near the puncture. We found that the
following gauge conditions produced smooth waveforms:

@0� � �2�K; (8)

@t�a � Ba; @tBa � 3=4@t~�
a � �Ba: (9)

However, these gauge conditions require careful treatment
of � near the puncture in order for the system to remain
stable. In particular, we enforce �> �h4, where � is
chosen as small as possible.

In black-hole binary systems, the features that need to be
resolved range in scale from a fraction of M near the
horizons to over 100M in the wave zone when black holes
are in a slow inspiral motion. This difference in scales
makes simple unigrid evolutions extremely inefficient.
We mitigate this problem by introducing a ‘‘multiple tran-
sition’’ Fisheye transformation. This Fisheye coordinate is
a natural extension of the ‘‘transition Fisheye’’ coordinate
[8,19] (where the effective resolution changes from some
inner resolution h to an outer resolution ah inside a region
of a given width, where a is a user specified parameter) but
with multiple transition regions allowing for fine tuning of
the resolution in intermediate regions. This new Fisheye
coordinate simulates fixed-mesh refinement.

For puncture data, the estimated innermost stable circu-
lar orbit (ISCO) [20] is characterized by the parameters

L=M � 4:9; P=M � 0:335; Y=M � �1:1515;

J=M2 � 0:77; M� � 0:178; m � 0:45M; (10)

where m is the mass of each single black hole, M is the
total Arnowitt-Deser-Misner mass of the binary system, L
is the proper distance between the apparent horizons, P is
the magnitude of the linear momenta (equal but opposite
and perpendicular to the line connecting the holes), J is the
total angular momentum, and �0; Y; 0� is the coordinate
location of the punctures. We use the Brandt-Brügmann
approach along with the BAM_ELLIPTIC [13,18] CACTUS

thorn to solve for these initial data.
We use 	-rotational symmetry about the polar axis (Pi

symmetry) and reflection symmetry across the orbital
plane to reduce the computational domain to one quadrant.
We choose Fisheye parameters that produce an inner reso-
lution h, an intermediate resolution of 5h, and an outer
resolution of 25h. These parameters place the outer bound-
ary at 88M, where we use radiative boundary conditions on
all variables [19].

At the puncture � vanishes, and Eq. (2) implies that the
puncture position obeys @t ~xpunct � � ~�� ~xpunct�. We track
the puncture positions throughout the evolution by inte-
grating this equation (we confirmed that the coordinate
location of the minimum value of � is within one grid
point of these integrated trajectories). Note that we stagger
the grid about the z � 0 plane. Consequently, the punctures
never lie on grid points. The shift at the punctures is
obtained by fourth-order interpolation. Figure 1 shows
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the trajectory of the punctures for the h � M=21 run. A
common horizon forms just before the punctures complete
half of an orbit. The punctures continue to orbit throughout
the evolution.

We use the ZORRO thorn [8,12] to calculate  4 and
decompose it into (‘;m) modes. Figure 2 shows the real
and imaginary parts of the (‘ � 2, m � 2) mode of  4 at
r � 15M (we choose this small observer radius to delay
outer boundary effects) for resolutions of h � M=15;
M=21;M=27, as well as a convergence plot of these data.
The lower plot shows that the waveforms are fourth-order
convergent. The radiated energy (as measured from the
M=27 run) is 2:8%� 0:2% in excellent agreement with the
final horizon mass (see below), and the radiated angular
momentum is Jz � �0:12M2 � 0:01M2 [computed using
Eqs. (22)–(24) of Ref. [21]]. Our largest run (h � M=27)
used 2882 � 576 grid points (64 GB) and ran on 16 nodes
(dual 3.2 GHz Xeon processors) for 2 weeks.

We use Thornburg’s AHFINDERDIRECT thorn [22] to find
apparent horizons. We first detect a common apparent
horizon at t � 18:8M. The common horizon has an irre-
ducible mass of 0:9056M, and the ratio of polar to equa-
torial circumferences asymptotes to 0:900� 0:002. One
can show analytically [9] that, for a Kerr black hole, the
ratio of the polar and equatorial horizon circumferences
Cr � Cp=Ce is given by

Cr �
1�

��������������
1� ~a2
p

	
E
�
�

~a2

�1�
��������������
1� ~a2
p

�2

�
; (11)

where ~a � a=MH and E�x� is the complete elliptic inte-
gral of the second kind. In the case of a perturbed black
hole produced by a merger, this ratio shows quasinormal

ringing behavior before damping to the expected Kerr
value. The horizon mass is related to the spin and irreduc-

ible mass byMH � �Mirr=~a�
���������������������������������
2�1�

��������������
1� ~a2
p

�

q
. Hence, the

irreducible horizon mass and circumference ratio that we
measure correspond to a spin of ~a � 0:677� 0:006 and a
horizon mass of 0:972M� 0:002M. The horizon mass
reduction is in excellent agreement with the calculated
radiated energy of 0:028M� 0:002M.

Table I summarizes the main results of our full numeri-
cal evolution of binary black holes from the ISCO down to
the final Kerr black-hole remnant. Waveforms, as de-
scribed in terms of the Weyl scalar  4, are dominated by
the modes ‘ � 2, m � �2 and show a strong circular
polarization as seen along the axis of orbital symmetry.
These results are in good agreement with the results calcu-
lated by the Lazarus approach [6,7]. The agreement is
especially remarkable considering the vastly different ap-
proaches used.

−1.5 −0.5 0.5 1.5
x/M

−1.5

−0.5

0.5

1.5
y/

M

FIG. 1 (color online). The trajectories of the punctures along
with the first common horizon and the individual horizons at t �
0, 10M, and 18:8M. The solid circles correspond to the centroids
of the apparent horizons every 2:5M. The common horizon
forms at 18:8M, just before the puncture complete a half orbit.
The punctures continue to orbit throughout the evolution.
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FIG. 2 (color online). QC0 waveforms. The top plot shows the
real part (thinner lines) and imaginary part (thicker lines) of the
(‘ � 2, m � 2) mode of  4 at r � 15M for resolutions of h �
M=15, M=21, and M=27. Note the 	=2 phase lag in the real part.
The bottom plot shows the differences between imaginary wave-
forms for h � M=15 and h � M=21 as well as the difference
between waveforms for h � M=21 and h � M=27. The latter
difference has been rescaled by 4.48 to demonstrate fourth-order
convergence. The real part of the waveforms exhibits similar
fourth-order convergence. Errors in the M=27 run are smaller
than 1=200 of the amplitude, as inferred by Richardson extrapo-
lation, up to t � 75M.

TABLE I. Results of the evolution.

Method Erad=M Jrad=M2 tmerger=M a=MH

This Letter 2:8� 0:2 15� 1% TCAH 	 18:8 0:677� 0:006
Lazarusa 2:5� 0:2 13� 2% TTran 	 10 0:70� 0:02

aErrors quoted in the Lazarus runs are only those from the
differences among transition times; hence, they represent only
a lower bound to the total errors.
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The Hamiltonian constraint violation is third-order con-
vergent in the bulk, with linear convergence at the current
puncture locations and fourth-order convergence at former
puncture locations. Figure 3 shows the Hamiltonian con-
straint violation along the y axis at t � 22M (approxi-
mately the time for half an orbit in this gauge).

Note that, in this Letter, we used a convenient numerical
tetrad to calculate the Weyl scalar  4. This waveform
extraction procedure is valid when the far-field spacetime
approaches that of a perturbed Schwarzschild black hole.
In future simulations, we plan to use a more robust wave
extraction method recently implemented in Ref. [23].

The full nonlinear numerical technique just described
has shown long-term stability, at least for the merger of
binary-black-hole cases we have had the opportunity to
analyze so far. We have also been able to prove fourth-
order convergence up to relatively high resolutions such as
h � M=36. This opens up the possibility of studying even
more interesting astrophysical scenarios such as black-
hole binaries starting from larger separations, which would
undergo several orbits before the final plunge. Addition-
ally, we plan evolutions based on the more astrophysically
relevant thin-sandwich [24] and post-Newtonian [25] ini-
tial data sets. We will also consider unequal-mass black-
hole binaries and compute their gravitational kick in order
to evaluate its astrophysical consequences [26]. Finally, we
plan to examine mergers of highly spinning black-hole
binaries and study the possible ‘‘hangup’’ of the binary
until the excess angular momentum is radiated.

A similar approach to evolving moving black holes
without excision has been independently implemented by
Baker et al. [27]. Both techniques produce similar results
for the emitted energy and radiated angular momentum.

We thank Erik Schnetter for providing the Pi-symmetry
thorns. We thank Bernard Kelly for careful reading of this
Letter. We thank Mark Hannam for helpful discussions. We
gratefully acknowledge the support of the NASA Center
for Gravitational Wave Astronomy at University of Texas
at Brownsville (NAG5-13396) and the NSF for financial
support from Grants No. PHY-0140326 and No. PHY-
0354867. Computational resources were provided by the
Funes cluster at UTB.
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[11] B. Brügmann, W. Tichy, and N. Jansen, Phys. Rev. Lett.

92, 211101 (2004).
[12] Y. Zlochower, J. G. Baker, M. Campanelli, and C. O.

Lousto, Phys. Rev. D 72, 024021 (2005).
[13] http://www.cactuscode.org
[14] T. Nakamura, K. Oohara, and Y. Kojima, Prog. Theor.

Phys. Suppl. 90, 1 (1987).
[15] M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428

(1995).
[16] T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59,

024007 (1999).
[17] B. Brugmann, Int. J. Mod. Phys. D 8, 85 (1999).
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FIG. 3 (color online). The Hamiltonian constraint violation at
t � 22M along the y axis for h � M=21 and h � M=27 [re-
scaled by �27=21�3]. The good agreement between these curves
indicates that the Hamiltonian is third-order convergent.
However, the constraint is linearly convergent on the puncture.
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