70 research outputs found

    VOCs Measurements in Residential Buildings: Quantification via Thermal Desorption and Assessment of Indoor Concentrations in a Case-Study

    Get PDF
    Volatile organic compounds (VOCs) represent one of the most important categories of pollutants, influencing the air quality and human health and well-being in indoor environments. In the present study, 12 selected VOCs were sampled using Tenax TA tubes and analyzed by thermal desorption combined with gas chromatography and a flame ionization detector (TD-GC-FID). The TD-GC-FID method was optimized to obtain the separation of all the analytical peaks (including m- and p-xylene) and a satisfactory sensitivity, with low detection (between 0.14 and 0.31 ng) and quantification (between 0.47 and 1.02 ng) limits. The whole procedure was firstly assessed with the analysis of four co-located tubes exposed at an outdoor monitoring site, with results that revealed a very low inter-tubes variability (relative standard deviations of parallel measurements <5%). Then, the measurement protocol was used to quantify the indoor concentrations of the target VOCs in nine different homes during the dishwasher washing cycle. The most abundant detected VOC in all dwellings was d-limonene (mean: 231 µg/m3; maximum: 611 µg/m3). All the other compounds were monitored at concentration levels one or two orders of magnitude lower than d-limonene, and were generally comparable with those found in the scientific literature. In terms of health concerns, the measured concentrations were always well below the safe levels established for the protection of the general population in living environments

    A Critical Role for Perivascular Cells in Amplifying Vascular Leakage Induced by Dengue Virus Non-Structural Protein 1

    Get PDF
    ABSTRACT Dengue is the most prevalent arthropod-borne viral disease affecting humans, with severe dengue typified by potentially fatal microvascular leakage and hypovolemic shock. Blood vessels of the microvasculature are composed of a tubular structure of endothelial cells ensheathed by perivascular cells (pericytes). Pericytes support endothelial cell barrier formation and maintenance through paracrine and contact-mediated signaling and are critical to microvascular integrity. Pericyte dysfunction has been linked to vascular leakage in noncommunicable pathologies such as diabetic retinopathy but has never been linked to infection-related vascular leakage. Dengue vascular leakage has been shown to result in part from the direct action of the secreted dengue virus (DENV) nonstructural protein NS1 on endothelial cells. Using primary human vascular cells, we show here that NS1 also causes pericyte dysfunction and that NS1-induced endothelial hyperpermeability is more pronounced in the presence of pericytes. Notably, NS1 specifically disrupted the ability of pericytes to support endothelial cell function in a three-dimensional (3D) microvascular assay, with no effect on pericyte viability or physiology. These effects are mediated at least in part through contact-independent paracrine signals involved in endothelial barrier maintenance by pericytes. We therefore identify a role for pericytes in amplifying NS1-induced microvascular hyperpermeability in severe dengue and thus show that pericytes can play a critical role in the etiology of an infectious vascular leakage syndrome. These findings open new avenues of research for the development of drugs and diagnostic assays for combating infection-induced vascular leakage, such as severe dengue. IMPORTANCE The World Health Organization considers dengue one of the top 10 global public health problems. There is no specific antiviral therapy to treat dengue virus and no way of predicting which patients will develop potentially fatal severe dengue, typified by vascular leakage and circulatory shock. We show here that perivascular cells (pericytes) amplify the vascular leakage-inducing effects of the dengue viral protein NS1 through contact-independent signaling to endothelial cells. While pericytes are known to contribute to noncommunicable vascular leakage, this is the first time these cells have been implicated in the vascular effects of an infectious disease. Our findings could pave the way for new therapies and diagnostics to combat dengue and potentially other infectious vascular leakage syndromes

    Smart-working VS office work: how does personal exposure to different air pollutants change?

    Get PDF
    The COVID-19 pandemic is raging all over the world, with possible structural effects on the work: the smart-working (WFH -Working From Home) role is therefore emphasized by the fact that it could become a traditional way of working in many work sectors. Several scientific papers have recently analyzed the WFH phenomenon under different aspects, but scientific studies have not yet been conducted considering the differences between WFH and WFO (Working From Office), in terms of evaluation of personal exposure assessment to selected airborne pollutants. This study, therefore, aims to evaluate, using portable monitors, the differences in terms of personal exposure to selected airborne pollutants, during different working conditions (WFO vs WFH), over long periods of time (from days to weeks), extending the results to even longer periods (years), to adhere to the approach proposed by the concept of the exposome. The preliminary results of this study refer to three separate phases of the work (i) re-analyses of literature data via Monte Carlo simulation, and assessment of personal exposure to different air pollutants during different working conditions, during (ii) “long term” campaign and (iii) a “short term” monitoring campaign. During the two different measurement campaigns, portable instrumentation was used, because of the ability of these kinds of instruments to obtain data characterized by a high spatial and temperature resolution. The re-elaborations of the data obtained from the literature show how, under different conditions, the exposure concentrations to different PM fractions are statistically lower in WFH working conditions, compared to WFO conditions. These results are in contrast with the preliminary results obtained from exploratory monitoring (both for the “long term” and for the “short term” campaigns). The results obtained from these exploratory monitoring show that the WFH condition has a greater impact on the daily exposure of the monitored subjects, compared to the WFO condition

    Monitor and sensors 2.0 for exposure assessment to airborne pollutants

    Get PDF
    In recent years, the issue of exposure assessment to airborne pollutants has become increasingly popular, both in the occupational and environmental fields. The increasingly stringent national and international air quality standards and exposure limit values both for indoor environments and occupational exposure limit values have been developed with the aim of protecting the health of the general population and workers. On the other hand, this requires a considerable and continuous development of the technologies used to monitor the concentrations of the pollutants to ensure the reliability of the exposure assessment studies. In this regard, one of the most interesting aspects is certainly the development of “new generation” instrumentation for monitoring airborne pollutants (“Next Generation Monitors and Sensors” – NGMS). The main purpose of this work is to analyze the state of the art regarding the afore-mentioned instrumentation, to be able to investigate any practical applications within exposure assessment studies. In this regard, a systematic review of the scientific literature was carried out using three different databases (Scopus, PubMed and Web of Knowledge) and the results were analyzed in terms of the objectives set out above. What emerged is the fact that the use of NGMSs is increasingly growing within the scientific community for exposure assessment studies applied to the occupational and environmental context. The investigated studies have emphasized that NGMSs cannot be considered, in terms of the reliability of the results, to be equal to the reference measurement tools and techniques (i.e., those defined in recognized methods used for regulatory purposes), but they can certainly be integrated into the internal exposure assessment studies to improve their spatial-temporal resolution. These tools have the potential to be easily adapted to different types of studies, are characterized by a small size, which allows them to be worn comfortably without affecting the normal activities of workers or citizens, and by a relatively low cost. Despite this, there is certainly a gap with respect to the reference instrumentation, regarding the measurement performance and quality of the data provided; the objective to be set, however, is not to replace the traditional instrumentation with NGMSs but to integrate and combine the two typologies of instruments to benefit from the strengths of both, therefore, the desirable future developments in this sense has been discussed in this work

    Porcine Organotypic Epicardial Slice Protocol: A Tool for the Study of Epicardium in Cardiovascular Research

    Get PDF
    The epicardium has recently gained interest in the cardiovascular field due to its capacity to support heart regeneration after ischemic injury. Models to study the epicardium of large animals in vitro are limited and mainly based on epicardial cell isolation/differentiation from stem cells, followed by 2D cells culture. In this method paper, we describe the procedure to obtain and culture 3D organotypic heart slices presenting an intact epicardium, as a novel model to study the epicardial physiology and activation. Epicardial slices are obtained from porcine hearts using a high-precision vibratome and retain a healthy epicardial layer embedded in its native extracellular environment and connected with other cardiac cells (cardiomyocytes, fibroblasts, vascular cells etc.). Epicardial slices can be cultured for 72 h, providing an ideal model for studying the epicardium physiology or perform pharmacological interventions/gene therapy approaches. We also report on methods to assesses the viability and composition of the epicardial slices, and evaluate their architecture in 3D through tissue decoloration. Finally, we present a potential application for a nanomaterial-based gene transfer method for tracking of epicardial cells within the slice. Crucially, given the similarity in morphology and physiology of porcine heart with its human counterpart, our system provides a platform for translational research while providing a clinically relevant and ethical alternative to the use of small animals in this type of research

    mass concentration and size distribution of atmospheric particulate matter in an urban environment

    Get PDF
    To investigate the ambient mass concentration, size-distribution and temporal variability of atmospheric particulate matter (PM), a long-term monitoring campaign was undertaken at an urban background site in Como, Northern Italy, from May 2015 to March 2016. A 13-stage Low Pressure Impactor (DLPI) was used for the collection of size-segregated particulates in the 0.028-10 ÎĽm size range. The results revealed a good level of agreement between DLPI and a co-located Harvard-type PM_(2.5) Impactor, allowing them to be classified as comparable and characterized by a reciprocal predictability. The PM concentration levels varied greatly between the different 5-days monitoring sessions, with higher mean mass concentrations during the heating season. Appreciable seasonal differences were found for particles between 0.15 and 1.60 ÎĽm that, on average, registered concentration levels 3.5 times higher during the heating season (mean: 28.2 ÎĽg m^(-3); median: 24.4 ÎĽg m^(-3)) compared to the non-heating season (mean: 8.3 ÎĽg m^(-3); median: 7.6 ÎĽg m^(-3)). No relevant and significant differences were detected for the coarser ranges (> 1.60 ÎĽm). Temporal variabilities were influenced by typical PM urban sources (e.g., household heating, traffic), that significantly affected fine and submicrometer particles, and were related to meteorological factors. Ambient air particles exhibited a trimodal distribution: a first and sharp peak more pronounced during the heating season was identified between 0.3 and 0.5 ÎĽm and two other slight peaks in the coarse mode were centered on approximately 3 and 8 ÎĽm. No relevant differences were found in the shape of the size-distribution between the two investigated seasons. The mean PM_(2.5) (22.4 ÎĽg m^(-3)) and PM_(10) (27.7 ÎĽg m^(-3)) concentrations monitored in the study area exceeded the annual Air Quality Guideline Values (respectively equal to 10 ÎĽg m^(-3) and 20 ÎĽg m^(-3)) established by the World Health Organization

    Can climate policy enhance sustainability?

    Get PDF
    Implementing an effective climate policy is one of the main challenges for the future. Curbing greenhouse gas emissions can prevent future irreversible impacts of climate change. Climate policy is therefore crucial for present and future generations. Nonetheless, one may wonder whether future economic and social development could be harmed by climate policy. This paper addresses this question by examining recent developments in international climate policy and considering different levels of cooperation that may arise in light of the outcomes of the Conference of the Parties held in Doha. The paper analyses how various climate policy scenarios would enhance sustainability and whether there is a trade-off between climate policy and economic development and social cohesion. This is done by using a new comprehensive indicator, the FEEM Sustainability Index (FEEM SI), which aggregates several economic, social, and environmental indicators. The FEEM SI is built into a recursive-dynamic computable general equilibrium model of the world economy, thus offering the possibility of projecting all indicators into the future and of delivering a perspective assessment of sustainability under different future climate policy scenarios. We find that the environmental component of sustainability improves at the regional and world level thanks to the implementation of climate policies. Overall sustainability increases in all scenarios since the economic and social components are affected negatively yet marginally. This analysis does not include explicitly climate change damages and this may lead to underestimating the benefits of policy actions. If the USA, Canada, Japan and Russia did not contribute to mitigating emissions, sustainability in these countries would decrease and the overall effectiveness of climate policy in enhancing global sustainability would be offset

    Smart working in Italy: what aspects to consider in terms of health prevention and protection?

    Get PDF
    Agile (or remote) work has spread since the early 90s, but the adoption of this type of work hasn’t always been exploit ed to its full potential. Recently, this way of working has acquired greater importance: in response to the COVID-19 pandemic, to limit the number of infections, and consequent number of deaths and hospital admissions, many coun tries have adopted a wide spectrum of containment measures, such as encouraging (or oblige) people to work remote ly, whenever possible. Due to this containment measure, millions of workers around the world have been destined to work from home. Moreover, it would seem that this mode of working will stand out as a hybrid mode form, to ensure a better balance between office- and home-working. For this reason, the present work aims to highlight the main out comes from studies conducted in Italy, concerning the positive and negative effects of smart working, reporting the gaps relating to the assessments of the remote working environment. To achieve this goal, results (N: 9 scientific papers) obtained from a search query set for extraction of studies from a scientific literature database were analyzed. In addition to report the positive and negative effects of smart working, our research shows that the studies conducted in Italy regarding this way of working are still scarce and based only on the administration of a questionnaire (or on the conduction of an interview) to workers. No real assessments have been performed, in terms of workers’ safety and health, in the condition of working from home. An in depth analysis of the experience of employees involved in remote working conditions could be of particular interest in future studies, to maximize the positive aspects and reduce the risks of worsening the physical and psy chosocial well-being of employees. In fact, if smart working would become a common way of working as reported in the literature, it could have a significant impact on both organizations and employees and it should therefore be investigated in the best possible wa

    Can the Paris Deal Boost SDGs Achievement? An Assessment of Climate Mitigation Co-benefits or Side-effects on Poverty and Inequality

    No full text
    The paper analyses the synergies and trade-offs between emission reduction policies and sustainable development objectives. Specifically, it provides an ex-ante assessment that the impacts of the Nationally Determined Contributions (NDCs), submitted under the Paris Agreement, will have on the Sustainable Development Goals (SDGs) of poverty eradication (SDG1) and reduced income inequality (SDG10). By combining an empirical analysis with a modelling exercise, the paper estimates the future trends of poverty prevalence and inequality across countries in a reference scenario and under a climate mitigation policy with alternative revenue recycling schemes. Our results suggest that a full implementation of the emission reduction contributions, stated in the NDCs, is projected to slow down the effort to reduce poverty by 2030 (+2% of the population below the poverty line compared to the baseline scenario), especially in countries that have proposed relatively more stringent mitigation targets and suffer higher policy costs. Conversely, countries with a stringent mitigation policy experience a reduction of inequality compared to baseline scenario levels. If financial support for mitigation action in developing countries is provided through an international climate fund, the prevalence of poverty will be slightly reduced at the aggregate level (185,000fewer poor people with respect to the mitigation scenario), but the country-specific effect depends on the relative size of funds flowing to beneficiary countries and on their economic structure
    • …
    corecore