1,879 research outputs found

    Enhancement of magnetic anisotropy barrier in long range interacting spin systems

    Full text link
    Magnetic materials are usually characterized by anisotropy energy barriers which dictate the time scale of the magnetization decay and consequently the magnetic stability of the sample. Here we present a unified description, which includes coherent rotation and nucleation, for the magnetization decay in generic anisotropic spin systems. In particular, we show that, in presence of long range exchange interaction, the anisotropy energy barrier grows as the volume of the particle for on site anisotropy, while it grows even faster than the volume for exchange anisotropy, with an anisotropy energy barrier proportional to V2−α/dV^{2-\alpha/d}, where VV is the particle volume, α≤d\alpha \leq d is the range of interaction and dd is the embedding dimension. These results shows a relevant enhancement of the anisotropy energy barrier w.r.t. the short range case, where the anisotropy energy barrier grows as the particle cross sectional area for large particle size or large particle aspect ratio.Comment: 7 pages, 6 figures. Theory of Magnetic decay in nanosystem. Non equilibrium statistical mechanics of many body system

    Religious Spanish Folk-Drama in New Mexico

    Get PDF

    The Cell of Heavenly Justice

    Get PDF

    New Mexico Spanish Folk-Tales

    Get PDF
    The folk-tale is one of the most fascinating forms of folk-lore that can be studied. When a good story is told in the family circle (in many cases the entire village is one large family) or in a gathering of friends, the question: Where did you read that? never arises. Neither do the hearers make a written record of the tale they have just listened to. It is an accepted custom that all cuentos are committed to memory

    Manana Is Today

    Get PDF

    Relaxation to thermal equilibrium in the self-gravitating sheet model

    Full text link
    We revisit the issue of relaxation to thermal equilibrium in the so-called "sheet model", i.e., particles in one dimension interacting by attractive forces independent of their separation. We show that this relaxation may be very clearly detected and characterized by following the evolution of order parameters defined by appropriately normalized moments of the phase space distribution which probe its entanglement in space and velocity coordinates. For a class of quasi-stationary states which result from the violent relaxation of rectangular waterbag initial conditions, characterized by their virial ratio R_0, we show that relaxation occurs on a time scale which (i) scales approximately linearly in the particle number N, and (ii) shows also a strong dependence on R_0, with quasi-stationary states from colder initial conditions relaxing much more rapidly. The temporal evolution of the order parameter may be well described by a stretched exponential function. We study finally the correlation of the relaxation times with the amplitude of fluctuations in the relaxing quasi-stationary states, as well as the relation between temporal and ensemble averages.Comment: 37 pages, 24 figures; some additional discussion of previous literature and other minor modifications, final published versio

    Multi-scale Cover Selection by White-tailed Deer, Odocoileus virginianus, in an Agro-forested Landscape

    Get PDF
    Resource selection studies are commonly conducted at a single spatial scale, but this likely does not fully or accurately assess the hierarchical selection process used by animals. We used a multi-spatial scale approach to quantify White-tailed Deer (Odocoileus virginianus) cover selection in south-central Michigan during 2004–2006 by varying definitions of use and availability and ranking the relative importance of cover types under each study design. The number of cover types assigned as selected (proportional use > proportional availability) decreased from coarse (landscape level) to fine (within home range) scales, although at finer scales, selection seemed to be more consistent. Although the relative importance changed substantially across spatial scales, two cover types (conifers, upland deciduous forests) were consistently ranked as the two most important, providing strong evidence of their value to deer in the study area. Testing for resource selection patterns using a multi-spatial scale approach would provide additional insight into the ecology and behavior of a particular species

    Long-Range Effects in Layered Spin Structures

    Full text link
    We study theoretically layered spin systems where long-range dipolar interactions play a relevant role. By choosing a specific sample shape, we are able to reduce the complex Hamiltonian of the system to that of a much simpler coupled rotator model with short-range and mean-field interactions. This latter model has been studied in the past because of its interesting dynamical and statistical properties related to exotic features of long-range interactions. It is suggested that experiments could be conducted such that within a specific temperature range the presence of long-range interactions crucially affect the behavior of the system

    Bubble propagation in a helicoidal molecular chain

    Full text link
    We study the propagation of very large amplitude localized excitations in a model of DNA that takes explicitly into account the helicoidal structure. These excitations represent the ``transcription bubble'', where the hydrogen bonds between complementary bases are disrupted, allowing access to the genetic code. We propose these kind of excitations in alternative to kinks and breathers. The model has been introduced by Barbi et al. [Phys. Lett. A 253, 358 (1999)], and up to now it has been used to study on the one hand low amplitude breather solutions, and on the other hand the DNA melting transition. We extend the model to include the case of heterogeneous chains, in order to get closer to a description of real DNA; in fact, the Morse potential representing the interaction between complementary bases has two possible depths, one for A-T and one for G-C base pairs. We first compute the equilibrium configurations of a chain with a degree of uncoiling, and we find that a static bubble is among them; then we show, by molecular dynamics simulations, that these bubbles, once generated, can move along the chain. We find that also in the most unfavourable case, that of a heterogeneous DNA in the presence of thermal noise, the excitation can travel for well more 1000 base pairs.Comment: 25 pages, 7 figures. Submitted to Phys. Rev.

    The Spanish Temper

    Get PDF
    • …
    corecore