212 research outputs found

    Apoptosis-inducing antifungal peptides and proteins

    Get PDF
    Abstract Despite the availability of various classes of antimycotics, the treatment of patients with systemic fungal infections is challenging. Therefore the development of new antifungals is urgently required. Promising new antifungal candidates are antimicrobial peptides. In the present review, we provide an overview of antifungal peptides isolated from plants, insects, amphibians and mammals that induce apoptosis. Their antifungal spectrum, mode of action and toxicity are discussed in more detail

    The Antifungal Plant Defensin HsAFP1 from Heuchera sanguinea Induces Apoptosis in Candida albicans

    Get PDF
    Plant defensins are active against plant and human pathogenic fungi (such as Candida albicans) and baker's yeast. However, they are non-toxic to human cells, providing a possible source for treatment of fungal infections. In this study, we characterized the mode of action of the antifungal plant defensin HsAFP1 from coral bells by screening the Saccharomyces cerevisiae deletion mutant library for mutants with altered HsAFP1 sensitivity and verified the obtained genetic data by biochemical assays in S. cerevisiae and C. albicans. We identified 84 genes, which when deleted conferred at least fourfold hypersensitivity or resistance to HsAFP1. A considerable part of these genes were found to be implicated in mitochondrial functionality. In line, sodium azide, which blocks the respiratory electron transport chain, antagonized HsAFP1 antifungal activity, suggesting that a functional respiratory chain is indispensable for HsAFP1 antifungal action. Since mitochondria are the main source of cellular reactive oxygen species (ROS), we investigated the ROS-inducing nature of HsAFP1. We showed that HsAFP1 treatment of C. albicans resulted in ROS accumulation. As ROS accumulation is one of the phenotypic markers of apoptosis in yeast, we could further demonstrate that HsAFP1 induced apoptosis in C. albicans. These data provide novel mechanistic insights in the mode of action of a plant defensin

    Structure-activity relationship study of the plant-derived decapeptide OSIP108 inhibiting Candida albicans biofilm formation

    Get PDF
    We performed a structure-activity relationship study of the antibiofilm plant-derived decapeptide OSIP108. Introduction of positively charged amino acids R, H, and K resulted in an up-to-5-fold-increased antibiofilm activity against Candida albicans compared to native OSIP108, whereas replacement of R9 resulted in complete abolishment of its antibiofilm activity. By combining the most promising amino acid substitutions, we found that the double-substituted OSIP108 analogue Q6R/G7K had an 8-fold-increased antibiofilm activity

    ARACINs, Brassicaceae-specific peptides exhibiting antifungal activities against necrotrophic pathogens in Arabidopsis

    Get PDF
    Plants have developed a variety of mechanisms to cope with abiotic and biotic stresses. In a previous subcellular localization study of hydrogen peroxide-responsive proteins, two peptides with an unknown function (designated ARACIN1 and ARACIN2) have been identified. These peptides are structurally very similar but are transcriptionally differentially regulated during abiotic stresses during Botrytis cinerea infection or after benzothiadiazole and methyl jasmonate treatments. In Arabidopsis (Arabidopsis thaliana), these paralogous genes are positioned in tandem within a cluster of pathogen defense-related genes. Both ARACINs are small, cationic, and hydrophobic peptides, known characteristics for antimicrobial peptides. Their genes are expressed in peripheral cell layers prone to pathogen entry and are lineage specific to the Brassicaceae family. In vitro bioassays demonstrated that both ARACIN peptides have a direct antifungal effect against the agronomically and economically important necrotrophic fungi B. cinerea, Alternaria brassicicola, Fusarium graminearum, and Sclerotinia sclerotiorum and yeast (Saccharomyces cerevisiae). In addition, transgenic Arabidopsis plants that ectopically express ARACIN1 are protected better against infections with both B. cinerea and A. brassicicola. Therefore, we can conclude that both ARACINs act as antimicrobial peptides

    Stimulation of superoxide production increases fungicidal action of miconazole against Candida albicans biofilms

    Get PDF
    We performed a whole-transcriptome analysis of miconazole-treated Candida albicans biofilms, using RNA-sequencing. Our aim was to identify molecular pathways employed by biofilm cells of this pathogen to resist action of the commonly used antifungal miconazole. As expected, genes involved in sterol biosynthesis and genes encoding drug efflux pumps were highly induced in biofilm cells upon miconazole treatment. Other processes were affected as well, including the electron transport chain (ETC), of which eight components were transcriptionally downregulated. Within a diverse set of 17 inhibitors/inducers of the transcriptionally affected pathways, the ETC inhibitors acted most synergistically with miconazole against C. albicans biofilm cells. Synergy was not observed for planktonically growing C. albicans cultures or when biofilms were treated in oxygen-deprived conditions, pointing to a biofilm-specific oxygen-dependent tolerance mechanism. In line, a correlation between miconazole's fungicidal action against C. albicans biofilm cells and the levels of superoxide radicals was observed, and confirmed both genetically and pharmacologically using a triple superoxide dismutase mutant and a superoxide dismutase inhibitor N-N'-diethyldithiocarbamate, respectively. Consequently, ETC inhibitors that result in mitochondrial dysfunction and affect production of reactive oxygen species can increase miconazole's fungicidal activity against C. albicans biofilm cells

    Sunflower bark extract and uses thereof

    Get PDF
    The present invention relates to plant extracts and their use as biostimulant and biocontrol agent. More specific, the invention provides extracts of plants of the genus Helianthus which are capable of modifying root architecture and stimulate root development in plants. Hence, said extracts can be used to control plant development such as e.g. improve general root architecture, nutrient uptake and increase tolerance of plants to drought. In addition, these extracts can be used to control plant disease

    Potentiation of Antibiofilm Activity of Amphotericin B by Superoxide Dismutase Inhibition

    Get PDF
    This study demonstrates a role for superoxide dismutases (Sods) in governing tolerance of Candida albicans biofilms to amphotericin B (AmB). Coincubation of C. albicans biofilms with AmB and the Sod inhibitors N,N′-diethyldithiocarbamate (DDC) or ammonium tetrathiomolybdate (ATM) resulted in reduced viable biofilm cells and increased intracellular reactive oxygen species levels as compared to incubation of biofilm cells with AmB, DDC, or ATM alone. Hence, Sod inhibitors can be used to potentiate the activity of AmB against C. albicans biofilms
    • …
    corecore