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Abstract−We determined the minimal fungicidal concentration (MFC) of 

dihydrosphingosine (DHS), phytosphingosine (PHS) and 5 short-chain DHS derivatives 

for Candida albicans and Candida glabrata. We found that a C15- and a C17-homologue 

of DHS showed a 2- to 10-fold decreased MFC as compared to native DHS (i.e. C18-

DHS). DHS derivatives that were active, i.e. comprising 12, 15, 17 or 18 carbon atoms, 

induced accumulation of reactive oxygen species (ROS) in C. albicans, whereas inactive 

DHS derivatives, i.e. C5- and C9-DHS, did not. The most active DHS derivatives, i.e. 

C15-DHS and C17-DHS, induced ROS production to the highest extent. Interestingly, the 

presence of 10 mM of the antioxidant ascorbic acid decreased the fungicidal activity of 

C12-, C15- and C17-DHS against C. albicans, whereas the presence of ascorbic acid had 

no effect on the fungicidal activity of native DHS and PHS. These data point to a link 

between the fungicidal activity and ROS induction capacity of selected truncated DHS 

derivatives in C. albicans. 

 

Long-chain sphingoid bases, e.g. phytosphingosine (PHS), sphingosine and sphinganine 

(dihydrosphingosine, DHS) inhibit the growth of several yeast and fungal species in vitro, 

including Candida albicans1, Malassezia furfur1, Aspergillus nidulans2, Saccharomyces 

cerevisiae3, Trichophyton mentagrophytes and T. tonsurans.4 Sphingosines also possess 

antimicrobial activity in vitro: they are effective against Staphylococcus aureus, 

Streptococcus pyogenes, Micrococcus luteus, Propionibacterium acnes, and 

Brevibacterium epidermidis.5 Cheng and coworkers found that the antifungal activity of 

DHS and PHS against A. nidulans acts through the rapid induction of metacaspase-

independent apoptosis, associated with the rapid accumulation of reactive oxygen species 

(ROS).2 Regarding the in vivo antifungal activity of sphingoid bases, Bibel and 

coworkers demonstrated that DHS and sphingosine, when topically applied on human 

skin, are effective against C. albicans infections and also prove curative in experimental 

guinea-pig models for C. albicans and T. mentagrophytes infections.6 Interestingly, no 

gross toxicity was observed among animals or human volunteers6, which points to the 

therapeutic potential of sphingoid bases against fungal infections. 
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The aim of this study was to analyse the in vitro antifungal activity of PHS, DHS and 

truncated analogues of DHS. It has been previously demonstrated that the minimum 

chain length required for antifungal activity of sphingoid bases against C. glabrata lies in 

the C7-C18 range, based on the fact that 3 DHS analogues with C6 chain displayed no 

antifungal activity up to 100 µg/ml.7 Therefore, we synthesized a series of truncated DHS 

analogues with C5 (C5-DHS), C9 (C9-DHS), C12 (C12-DHS) or C15 (C15-DHS) chain 

lengths and determined the minimal fungicidal concentration (MFC) of these derivatives 

along with C17-DHS, C18-DHS and C18-PHS against Candida albicans strain CAI48 

and Candida glabrata strain BG29. C. glabrata is a human pathogen with recognized 

clinical importance due to its association with fungemia caused by fluconazole-resistant 

yeasts.10 Furthermore, we determined whether C18-PHS, C18-DHS and the DHS 

derivatives induce ROS accumulation in C. albicans. 

 

 

 

C5-DHS: n = 1 

C9-DHS: n = 5 

C12-DHS: n = 8 

C15-DHS: n = 11 

C17-DHS: n = 13 

C18-DHS: n = 14 

 

C18-PHS 

Chart 1. Overview of tested compounds 

 

Compounds tested in this study (Chart 1) were obtained as follows. C17-DHS, C18-PHS 

and C18-DHS were purchased from Avanti Polar Lipids (Alabaster, AL, US). C12-DHS 

was synthesized as previously described.11 Compounds C5-DHS, C9-DHS and C15-

DHS12 were synthesized from Garner’s aldehyde (Scheme 1). Treatment of S-enantiomer 

of Garner’s aldehyde with an appropriate lithium alkyl acetylide in the presence of 
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HMPA to ensure erythro-selectivity afforded compounds 1a-c13 in reasonable yield and 

with excellent stereoselectivity (traces of threo-derivatives). In case of C5-DHS, 

deprotection of the intermediate TMS-protected acetylene was achieved using TBAF in 

THF.13 Selective deprotection of the isopropylidene moiety13 afforded synthons 2a-c. 

Reduction of the alkyne functionality using Pd/C and subsequent deprotection of the tert-

Boc protecting group under acidic conditions gave access to the envisioned compounds in 

good overall yield. 

 

 

Scheme 1. Synthesis of compounds C5-DHS, C9-DHS and C15-DHS. 

 

The fungicidal activity of each compound against C. albicans and C. glabrata was 

determined in PBS19 and the MFC for each compound was calculated as the minimal 

concentration resulting in less than 1% survival of the yeast strain relative to the DMSO 

control (table 1). 
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Table 1. Minimal fungicidal concentration (MFC) for C18-PHS, C18-DHS and its 

derivatives in the absence and presence of 10 mM ascorbic acid against C. albicans 

and C. glabrata 

 MFC (µg/ml) 

 C. glabrata C. albicans 

Compound 0 mM AAa 0 mM AA 10 mM AA 

C5-DHS > 100 > 100 NDb 

C9-DHS > 100 > 100 ND 

C12-DHS 10 10 > 25 

C15-DHS 0.5 0.5 10 

C17-DHS 0.5 0.5 2 

DHS 1 5 5 

PHS 1 1 1 

a ascorbic acid; b not determined 

 

C15- and C17-DHS are the most active homologues against both yeast species: their 

MFC is 2- to 10-fold lower as compared to native DHS, and 20-fold lower as compared 

to C12-DHS. DHS derivatives with shorter chain length, i.e. C5-DHS and C9-DHS, are 

not active against the tested yeast species. Interestingly, native PHS is 5-fold more active 

as compared to native DHS against C. albicans, indicating that an additional hydroxyl 

group at position 4 can increase the antifungal activity against C. albicans. Moreover, we 

tested the fungicidal activity of C2- and C6-dihydroceramides, with C2 and C6 being the 

number of C atoms in the acyl residue (Avanti Polar Lipids, AL, US,) and found these 

ceramides to be completely inactive (MFC > 100 µg/ml) against both yeast species, 

indicating that a free amine at position C2 of the sphingoid base is necessary for 

fungicidal activity of sphingolipids. These data corroborate with the data of Chung and 

coworkers who demonstrated that C2-phytoceramide is not active against Saccharomyces 
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cerevisiae.20 In conclusion, the optimal chain length for fungicidal activity of DHS 

derivatives against C. albicans and C. glabrata lies between C15 and C17.  

In the literature, only two other studies report on derivatives of sphingoid bases with 

increased antifungal activity. One study describes a series of new PHS analogues with 

natural or altered stereochemistry at C3 and/or C4, and OH, NH2 or N3 substituents at C1, 

but without alteration of the sphingoid backbone length.21 The 1-azido derivative, 

exhibiting the natural D-ribo stereochemistry, showed 10-fold improved antifungal 

activity against C. albicans as compared to PHS, based on determination of their minimal 

inhibitory concentration (MIC). However, antifungal activity of the compounds against 

C. glabrata was not reported.21 Another study reports on the antifungal activity of 

dimeric aminoalcohols.7 The most potent derivative was the dimeric aminoalcohol 

oceanin, which is characterized by 10-fold improved antifungal activity against C. 

glabrata as compared to DHS, based on their MIC. Oceanin is a C28 lipid chain with two 

polar head groups: one with a (2S,3R)-D-erythro-2-amino-1,3-diol moiety as in natural 

sphingosine, the other one with a (2R,3R)-2-aminopropan-3-ol group (threo).7 The MFC 

of oceanin against C. glabrata is 10 µg/ml. Interestingly, oceanin is not active against C. 

albicans. 

It should be noted that determination of MFC values is preferred over MIC values, since 

the former reflects fungicidal activity whereas the latter may account for both fungistatic 

as well as fungicidal activity. Since fungicidal activity pinpoints to inhibition of targets 

that are essential for fungal growth22 or induction of an active cell death pathway (i.e. 

apoptosis), these values are more relevant for the design of antifungal drugs. 

Interestingly, it has previously been demonstrated that PHS and DHS induce apoptosis in 

Aspergillus nidulans, concomitant with an accumulation of reactive oxygen species 

(ROS).2  

In search of the mode of action of PHS, DHS and its derivatives against C. albicans, we 

determined ROS accumulation upon incubation with various concentrations of the 

compounds using 2’,7’-dichlorofluorescin diacetate staining as previously described.23 As 

can be seen in Figure 1, the inactive C5-DHS and C9-DHS fail to induce ROS, even at 

100 µg/ml, whereas C12-, C15- and C17-DHS, and native DHS and PHS induce ROS 
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accumulation in C. albicans. The most active DHS derivatives, i.e. C15-DHS and C17-

DHS, induced ROS production to the highest extent. Interestingly, the presence of 10 

mM of the antioxidant ascorbic acid decreased the fungicidal activity of C12-, C15- and 

C17-DHS, whereas the presence of ascorbic acid had no effect on the fungicidal activity 

of native DHS and PHS (Table 1). These data point to a link between the fungicidal 

activity and ROS induction capacity of short-chain DHS derivatives for C. albicans. In 

contrast, based on our data, there exists no causal link between ROS induction and cell 

death in yeast in case of native sphingoid bases. In this respect, Cheng and coworkers 

demonstrated that PHS and DHS induce an ROS-independent apoptotic cell death in 

Aspergillus nidulans.2 Hence, our findings point to a ROS-dependent fungicidal activity 

of short-chain DHS derivatives on yeast, in contrast to the ROS-independent fungicidal 

activity of native sphingoid bases on yeast. 
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Figure 1. Accumulation of endogenous ROS in C. albicans upon treatment with 

antifungal compounds. Logarithmically growing C. albicans cells were suspended in 

PBS, pre-incubated with the compounds for 3 h at 37°C, washed with PBS and incubated 

with 2’,7’-dichlorofluorescin diacetate for 3 h at 37°C. Compounds used are DHS (open 
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triangles), PHS (open squares), C5-DHS (crosses), C9-DHS (stripes), C12-DHS (black 

circles), C15-DHS (black squares) and C17-DHS (black triangles). Fluorescence emitted 

by the cells was measured using fluorescence spectrometer (λex = 485 nm and λem = 525 

nm). Experiments have been performed in triplicate. 

 

In conclusion, we report on a series of synthetically easily accessible, truncated DHS-

analogues. Based on MFC measurements, C15- and C17-DHS, DHS homologues 

consisting of 15 and 17 carbon atoms respectively, prove 10-fold more active against C. 

albicans and 2-fold more active against C. glabrata as compared to native DHS. Since 

PHS, bearing a hydroxyl group at position 4, has 5-fold increased fungicidal activity 

against C. albicans as compared to DHS, the question remains whether introduction of 

such hydroxyl group at position 4 of C15- and C17-DHS can likewise decrease their 

MFC for C. albicans. Since it has previously been demonstrated that DHS is non-toxic 

upon topical administration and is effective against C. albicans infections in vivo 6, C15- 

and C17-DHS hold promising therapeutic potential as novel antimycotics. Further studies 

addressing the mode of action of C15- and/or C17-DHS and their toxicity are underway. 
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