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We performed a structure-activity relationship study of the antibiofilm plant-derived decapeptide OSIP108. Introduction of
positively charged amino acids R, H, and K resulted in an up-to-5-fold-increased antibiofilm activity against Candida albicans
compared to native OSIP108, whereas replacement of R9 resulted in complete abolishment of its antibiofilm activity. By combin-
ing the most promising amino acid substitutions, we found that the double-substituted OSIP108 analogue Q6R/G7K had an
8-fold-increased antibiofilm activity.

Disseminated candidiasis is associated with high mortality
rates, especially in patients immunocompromised due to

HIV and in patients who have received immunosuppressive drugs
for cancer therapy or organ transplantation (1). Moreover, in nat-
ural environments, Candida spp. are mainly found in biofilms.
Biofilms are well-structured microbial populations that are at-
tached to a biotic (e.g., the human body) or abiotic (e.g., medical
device) surface and are surrounded by a self-produced extracellu-
lar matrix of polysaccharides. Such biofilms are characterized by
an increased resistance toward the human immune system and the
currently available antimycotics (2, 3). Hence, C. albicans biofilms
are considered critical in the development of fungal infections and
their clinical outcome (2, 4, 5). Moreover, biofilm formation is
related to chronic infections with Candida spp. (6). From the cur-
rently available antimycotics, only lipid formulations of ampho-
tericin B and the echinocandins, such as caspofungin, are active
against fungal biofilms (7). However, resistance against these an-
tifungal agents has been described (8–12), urging the identifica-
tion of new antibiofilm agents.

We previously identified the Arabidopsis thaliana-derived de-
capeptide OSIP108 (13), which specifically interferes with the bio-
film formation process of C. albicans without affecting cell viabil-
ity (14). The latter is an important characteristic to potentially
limit the incidence of resistance. Furthermore, OSIP108 synergis-
tically interacts with amphotericin B and caspofungin against ma-
ture C. albicans biofilms (14). A preliminary structure-activity re-
lationship study of OSIP108 showed that (i) the order of amino
acid residues is important for antibiofilm activity, as a scrambled
version (S-OSIP108) containing all amino acids of OSIP108 but in
a randomized order showed no antibiofilm activity, (ii) OSIP108
containing all amino acids in the D-configuration (D-OSIP108)
still exhibits antibiofilm activity, and (iii) cyclization of OSIP108 is
not favorable for its antibiofilm activity (14). In this follow-up
study, we performed a whole amino acid scan of OSIP108, in
which every amino acid of OSIP108 was individually replaced by
all 19 other common amino acids (190 OSIP108 analogues). The
aim of this study was to identify important structural determi-
nants for OSIP108 antibiofilm activity as a basis to develop
OSIP108 analogues with improved antibiofilm activity compared
to native OSIP108.

The 190 peptide analogues of OSIP108 (MLCVLQGLRE) were

ordered from Pepscan (Lelystad, The Netherlands) and were of
crude purity, and the abilities to inhibit biofilm formation of C.
albicans SC5314 (at 0.39 to 50 �M) were assessed as described
previously (14). BIC-2 values, i.e., the minimal peptide concen-
trations that reduced the metabolic activity of the biofilms by 50%
(14), were determined relative to the growth control (0.5% di-
methyl sulfoxide), and the fold change in the BIC-2, relative to the
native OSIP108 peptide, was calculated. The constructed heat
map (Fig. 1) contains the average fold change in BIC-2s (increased
or decreased activity compared to native OSIP108) of at least two
independent biological experiments consisting of at least dupli-
cate measurements. For all the individual amino acids from the
native OSIP108 sequence, the peptide analogues were ranked
from lowest to highest antibiofilm activity (Fig. 1).

Statistical analysis (Table 1) was performed using GraphPad
Prism 6 software (San Diego, CA) via a one-way analysis of vari-
ance using Bonferroni’s multiple comparison test, with the aver-
age BIC-2s of the OSIP108 analogues compared with the average
BIC-2 of native OSIP108.

From this heat map, it is clear that replacement of the glycine at
position 7 (G7) with 13 out of the 19 amino acids, irrespective of
the functional nature of the amino acid, resulted in at least 1.5-
fold-increased antibiofilm activity compared to native OSIP108.
Being the only amino acid without a side chain, G allows flexibility
of the peptide conformation. So, it seems that peptides that are
more conformationally restrained exert a better antibiofilm activ-
ity. To investigate this hypothesis further, we tested two OSIP108
analogues in which the G7 was replaced by a D-amino acid,
namely, G7-D-histidine (G7-DH) and G7-D-lysine (G7-DK), as
these D-amino acids potentially occupy a different conformational
space than do the L-amino acids (Table 1). Both would result in a
similar loss of flexibility to their L-counterparts, but they would
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place the side chains in different locations. Since the antibiofilm
activities of these peptide analogues were not statistically different
from that of the native OSIP108 (P � 0.05) (Table 1), it appears
that neither the nature nor the location of the side chain is impor-
tant at position 7. Furthermore, replacement of valine 4 (V4) and
glutamic acid 10 (E10) with at least 8 other amino acids resulted in
increased antibiofilm activity of OSIP108 compared to native
OSIP108 (Fig. 1). All these data indicate that most OSIP108 ana-
logues with improved antibiofilm activity can be obtained by re-
placing G7, V4, or E10. In contrast, replacement of the arginine 9
(R9) with 17 out of the 19 amino acids led to at least a 3-fold
reduction of the antibiofilm activity compared to native OSIP108,
showing the absolute importance of R9 (Fig. 1). Interestingly, the
only two OSIP108 analogues in which an R9 substitution resulted
in activity comparable to the native OSIP108 were the analogues
where the positively charged R was replaced by one of the other
two positively charged amino acids, histidine (H) and lysine (K)
(Fig. 1). These data indicate that the presence of a positively
charged amino acid at the ninth position of the OSIP108 sequence
is essential for its antibiofilm activity. Finally, as can be seen from
Fig. 1, methionine 1 (M1), leucine 2 (L2), cysteine 3 (C3), and L5
are also important for antibiofilm activity, although to a lesser
extent than R9. In agreement with this finding, we found that an
OSIP108 dimer that was formed via disulfide bonds of the C3 side
chains showed no antibiofilm activity (BIC-2, �100 �M) (data
not shown).

In general, it is clear that the antibiofilm activity of OSIP108
can be increased at least 2-fold by (i) the introduction of positively
charged amino acids, such as H and/or K and/or R at C3, V4,
glutamine 6 (Q6), G7, L8, and E10, and/or by (ii) the introduction
of amino acids with a hydrophobic side chain at V4 (isoleucine

[I]), G7 (tryptophan [W], alanine [A], L, M, or phenylalanine
[F]), L8 (W), or E10 (L, W, or tyrosine [Y]) (Fig. 1). In line with
these observations, introduction of negatively charged amino ac-
ids, such as aspartic acid (D) and/or E at M1, L2, C3, or L5, re-
sulted in at least a 3-fold-reduced antibiofilm activity of OSIP108.
We previously demonstrated that OSIP108 mainly localizes to the
cell surface of C. albicans yeast and hyphal cells (14). The C. albi-
cans cell surface has an overall negative charge due to the presence
of phosphodiester bridges in the carbohydrate side chains and the
carboxyl groups of the cell wall proteins (15, 16). Therefore, the
introduction of positively charged amino acids at various places in
the OSIP108 sequence and removal of the negatively charged E10
may enhance the interaction of OSIP108 with its yet-unidentified
cell wall target(s).

Next, we selected the 5 most promising peptide analogues, i.e.,
those with a BIC-2 at least 3-fold lower than the native OSIP108,
from the screening, namely, Q6R (Q6 replaced by R), G7H, G7K,
G7R, and E10Y (Fig. 1; Table 1). To assess whether we could
further increase the antibiofilm activities of these OSIP108 deriv-
atives, we combined these substitutions in double- and triple-
substituted analogues and determined the BIC-2s of these
OSIP108 analogues against C. albicans biofilms (Table 1). We
found that the antibiofilm activities of various double OSIP108
analogues, namely, Q6R/G7K, Q6R/G7R, and G7R/E10Y, could
be additionally improved compared to the selected single-substi-
tuted OSIP108 analogues. For example, the antibiofilm activity of
Q6R/G7K was increased 8.1-fold above that of native OSIP108,
whereas the Q6R and G7K single-substituted analogues were
characterized by 4.8- and 3.7-fold-increased antibiofilm activities,
respectively, compared to native OSIP108 (Table 1). Surprisingly,
combination of the improved analogue E10Y with either Q6R or
G7K (leading to Q6R/E10Y and G7K/E10Y, respectively) resulted

FIG 1 Results of the structure-activity relationship study of OSIP108. C. albi-
cans biofilms were grown in the presence of OSIP108 analogues in which every
amino acid of the OSIP108 sequence was individually replaced with the indi-
cated amino acid, and their antibiofilm (AB) activities were determined. Col-
ors indicate average fold changes (FC) in BIC-2s (increased or decreased)
relative to the native OSIP108 in at least two biologically independent experi-
ments consisting of at least duplicate measurements. Black, native sequence.
For every amino acid of OSIP108, analogues are ranked from lowest (top) to
highest (bottom) antibiofilm activity. Amino acids marked in blue are posi-
tively charged amino acids; amino acids in brown are amino acids with a
hydrophobic side chain.

TABLE 1 Antibiofilm activities of selected OSIP108 analogues against
C. albicans biofilmsa

OSIP108
analogue Sequence

BIC-2
(mean � SEM) FC

OSIP108 MLCVLQGLRE 8.1 � 1.1 NA
Q6R MLCVLRGLRE 1.7 � 0.3 4.8
G7H MLCVLQHLRE 2.5 � 0.4 3.2
G7K MLCVLQKLRE 2.2 � 0.4 3.7
G7R MLCVLQRLRE 2.1 � 0.3 3.9
E10Y MLCVLQGLRY 2.3 � 0.2 3.5
G7-DH# MLCVLQ(D-H)LRE 2.9 � 0.0 2.8
G7-DK# MLCVLQ(D-K)LRE 2.9 � 0.0 2.8
Q6R/G7H MLCVLRHLRE 1.9 � 0.2 4.3
Q6R/G7K MLCVLRKLRE 1.0 � 0.0 8.1
Q6R/G7R MLCVLRRLRE 1.3 � 0.1 6.2
Q6R/E10Y MLCVLRFLRY � 25 NA
G7H/E10Y# MLCVLQHLRY 5.1 � 0.6 1.6
G7K/E10Y MLCVLQKLRY �25 NA
G7R/E10Y* MLCVLQRLRY 1.5 � 0.2 5.4
Q6R/G7H/E10Y* MLCVLRHLRY 1.4 � 0.3 5.8
Q6R/G7K/E10Y MLCVLRKLRY �25 NA
Q6R/G7R/E10Y MLCVLRRLRY �25 NA
a Amino acid replacements are indicated in boldface. Analogues with paradoxical
biofilm effects are indicated with an asterisk. Analogues with increased activity were
further characterized by the fold change (FC) relative to OSIP108 (FC � BIC-2 for
OSIP108/BIC-2 OSIP108 for analogue). NA, not applicable. All peptide analogues were
statistically different (P � 0.05) from the native OSIP108 except for the analogues
indicated with a pound sign.
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in a total abolishment of the antibiofilm activity (Table 1; BIC-2,
�25 �M). Next, we assessed the antibiofilm activities of the triple-
substituted analogues Q6R/G7H/E10Y, Q6R/G7K/E10Y, and
Q6R/G7R/E10Y. The antibiofilm activity of Q6R/G7H/E10Y was
increased 5.8-fold above that of native OSIP108 and thus slightly
better than the corresponding single-substituted OSIP108 ana-
logues (resulting in up to a 4.8-fold-increased antibiofilm activity
compared to OSIP108). Two of them, namely, Q6R/G7K/E10Y
and Q6R/G7R/E10Y, showed no antibiofilm activity (Table 1;
BIC-2, �25 �M). As already observed for the double analogues,
combining single-amino acid substitutes with improved antibio-
film activities does not necessarily result in further-increased an-
tibiofilm activity and, on the contrary, could completely abolish it.

As the highest antibiofilm activity was observed for the Q6R/
G7K analogue, we synthesized this OSIP108 analogue, as well as a
cyclic derivative of this double-substituted analogue (which in
view of potential applications is expected to be more stable than
the corresponding linear peptide) with 99% purity, as previously
described (14). The antibiofilm activity of the 99% pure double-
substituted Q6R/G7K analogue was not different from that of the
crude version (BIC-2, 1.5 � 0.2 �M versus 1.0 � 0.0 �M, respec-
tively [means � standard errors of the means]). Furthermore, in
line with our previous findings that cyclization is not favorable for
OSIP108 antibiofilm activity (14), the cyclic Q6R/G7K analogue
showed no antibiofilm activity (BIC-2, �25 �M).

Strikingly, the single-substituted OSIP108 analogues E10F,
E10M, E10K, E10H, and E10R and the double-substituted G7R/
E10Y and triple-substituted Q6R/G7H/E10Y OSIP108 analogues
allowed paradoxical biofilm formation at higher concentrations
(�6.25 or 12.5 �M) (data not shown). Paradoxical biofilm for-
mation is defined as a resurgence of biofilm formation (�50%
relative to control treatment) at peptide concentrations above the
BIC-2 (17). A similar paradoxical effect of caspofungin has been
observed on C. albicans biofilms and planktonic cells (17, 18); this
effect was found to be associated with multiple cell wall rearrange-
ments and calcineurin-mediated signaling pathways in planktonic
C. albicans cells (18, 19). Wiederhold and colleagues showed
higher MKC1 expression in C. albicans planktonic cells treated
with caspofungin concentrations leading to this paradoxical
growth phenomenon compared to fungicidal caspofungin con-
centrations (19). MKC1 encodes the central kinase of the C. albi-
cans cell wall integrity (CWI) pathway (20). We previously
showed that OSIP108 activates the C. albicans cell wall integrity
pathway (14). However, such a paradoxical biofilm effect was not
observed for the native OSIP108. It remains to be elucidated
whether the OSIP108 analogues that induce this paradoxical
growth phenomenon in C. albicans biofilm cells induce the CWI
pathway to a greater extent than native OSIP108 and whether this
induction of the CWI pathway is responsible for the observed
paradoxical biofilm effect.

In conclusion, this study shows that site-specific amino acid
substitutions can significantly alter the antibiofilm activity of
OSIP108. Subsequent double and triple combinations of ana-
logues with improved antibiofilm activities allowed us to select
OSIP108 with Q6R/G7K as the tested analogue with highest anti-
biofilm potential, with an 8.1-fold-higher activity against C. albi-
cans biofilms. In view of the urgent clinical need for novel and
more valuable antibiofilm treatments, the OSIP108 variants with
improved antibiofilm activities are valuable antibiofilm lead mol-
ecules.
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