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Plants have developed a variety of mechanisms to cope with abiotic and biotic stresses. In a previous subcellular localization study
of hydrogen peroxide-responsive proteins, two peptides with an unknown function (designated ARACIN1 and ARACIN2) have
been identified. These peptides are structurally very similar but are transcriptionally differentially regulated during abiotic stresses
during Botrytis cinerea infection or after benzothiadiazole and methyl jasmonate treatments. In Arabidopsis (Arabidopsis thaliana),
these paralogous genes are positioned in tandem within a cluster of pathogen defense-related genes. Both ARACINs are small,
cationic, and hydrophobic peptides, known characteristics for antimicrobial peptides. Their genes are expressed in peripheral cell
layers prone to pathogen entry and are lineage specific to the Brassicaceae family. In vitro bioassays demonstrated that both
ARACIN peptides have a direct antifungal effect against the agronomically and economically important necrotrophic fungi
B. cinerea, Alternaria brassicicola, Fusarium graminearum, and Sclerotinia sclerotiorum and yeast (Saccharomyces cerevisiae). In addition,
transgenic Arabidopsis plants that ectopically express ARACIN1 are protected better against infections with both B. cinerea and
A. brassicicola. Therefore, we can conclude that both ARACINs act as antimicrobial peptides.

During biotic and abiotic stresses, the cellular
metabolic status is perturbed, producing a variety of

reactive oxygen species (ROS) as a consequence (Van
Breusegem et al., 2008; Mittler et al., 2011). In addition
to being toxic byproducts of aerobic metabolism, ROS
and, more particularly, hydrogen peroxide (H2O2) are
considered as signaling molecules that trigger signal
transduction pathways involved in defense responses
and cell death (Apel and Hirt, 2004; Gadjev et al., 2006;
Van Breusegem and Dat, 2006). Transcriptome analyses
revealed an important enrichment of ROS-responsive
genes during biotic and abiotic stresses, including many
defense-related genes such as the pathogenesis-related
genes (Broekaert et al., 2000; Apel and Hirt, 2004; Torres
and Dangl, 2005; Torres et al., 2006; van Loon et al.,
2006; Queval et al., 2012). Among them, antimicrobial
peptides (AMPs) are considered to play a key role in
plant defense, acting both as permanent and inducible
defense barriers (García-Olmedo et al., 1998).

Plant AMPs are generally small (12–50 amino acids),
cationic, hydrophobic, and secreted peptides that are
widespread throughout the plant kingdom and in-
clude plant defensins, lipid transfer proteins, hevein-
and knottin-type peptides, cyclotides, snakins, maize
(Zea mays) basic peptide1, and polyprotein precursor
AMPs from both Macadamia integrifolia and Impatiens
balsamina (Broekaert et al., 1995; García-Olmedo et al.,
1998; Theis and Stahl, 2004; Sels et al., 2008). Due to their
amphipathic nature, AMPs are able to permeabilize the
pathogen’s membrane by both specific and nonspecific
electrostatic and hydrophobic interactions with cell sur-
face groups (Shai, 2002; Thevissen et al., 2003; Aerts et al.,
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2008). However, increasing evidence shows that the
antimicrobial action of some AMPs can be based on
more targeted mechanisms, including the interaction
with microbe-specific sphingolipids that act as a plant
defensin interaction site (Thevissen et al., 2000, 2003,
2004; Wilmes et al., 2011). In addition, AMPs can act
as protein translation or enzyme inhibitors, such as
a-amylase and protease inhibitors (Broekaert et al.,
1997; Lay and Anderson, 2005; Carvalho and Gomes,
2009), or they can inhibit ion channels (Kushmerick
et al., 1998; Spelbrink et al., 2004). Interestingly, roles
other than antimicrobial activity have been identified
(Franco, 2011), i.e. redox regulation (Huang et al., 2008)
and development (Takayama et al., 2001; Stotz et al., 2009;
Amien et al., 2010).

Overexpression of AMPs has been proposed as a
promising strategy to increase disease resistance in
transgenic plants (Carvalho and Gomes, 2009, 2011; Visser
et al., 2012) thanks to their small size, broad-spectrum
activity targeting the pathogen’s membrane, and a mode
of action that is difficult to develop resistance against
(Bulet et al., 2004; Marcos et al., 2008; Eggenberger
et al., 2011; Sarika et al., 2012). Overexpression of the
radish (Raphanus sativus) antifungal peptide RsAFP2
in transgenic Nicotiana tabacum plants increased resis-
tance against the fungus Alternaria longipes (Terras
et al., 1995), while overexpression of an alfalfa (Medicago
sativa) defensin (alfAFP) in transgenic potato (Solanum
tuberosum) provided high levels of field resistance
against Verticillium dahliae, the causative agent of the
agronomically important early dying disease (Gao
et al., 2000). A more advanced and durable approach is
to engineer transgenic plants that synthesize chimeras
of two or more AMPs with different modes of action to
develop a broad-spectrum resistance. For example, over-
expression of a chimeric cleavable polyprotein precursor
containing the mature domains of the plant defensins
Dahlia merckii AMP1 (DmAMP1) and RsAFP2 resulted
in the efficient release of both bioactive antifungal pep-
tides (François et al., 2002; Thevissen et al., 2004).

AMP overexpression can also confer enhanced tolerance
to abiotic stresses (Mirouze et al., 2006; Tamaoki et al.,
2008; Lee and Hwang, 2009). For instance, overexpression
of the Capsicum annuum AMP1 (CaAMP1) gene in Arabi-
dopsis (Arabidopsis thaliana) increased not only resistance
against both bacterial and fungal pathogens, but also
tolerance to high salt and drought stresses (Lee et al.,
2008; Lee and Hwang, 2009). Another example dem-
onstrating the involvement of AMPs in abiotic stress is
the zinc stress tolerance in transgenic Arabidopsis lines
obtained by overexpression of PLANT DEFENSIN (PDF)
genes of Arabidopsis halleri (Mirouze et al., 2006).

Here, we characterized two Arabidopsis AMPs, des-
ignated ARACIN1 and ARACIN2, that are transcrip-
tionally regulated by both biotic and abiotic stresses. We
demonstrate their antifungal activities in vitro against the
broad-host necrotrophic plant fungus Botrytis cinerea, the
causing agent of gray mold disease, and Alternaria bras-
sicicola, which causes black spot disease on members of
the Brassicaceae family (Neergaard and Andersen, 1945;

Braverman, 1971; Lawrence et al., 2008). Furthermore,
in planta overexpression of ARACIN1 significantly
improved resistance against both pathogens.

RESULTS

Stress and Hormone Responsiveness of ARACIN1
and ARACIN2

Previously, we compiled a comprehensive list of
H2O2-responsive genes using catalase-deficient Arabi-
dopsis plants exposed to high-light irradiation. Reduced
catalase levels, together with high-light exposure, leads
to the accumulation of photorespiratory H2O2 that,
in turn, affects the expression of more than 700 genes
(Vanderauwera et al., 2005, 2011; Inzé et al., 2012).
ARACIN1 (At5g36925), a peptide of unknown function,
was previously identified as nucleocytosolic in a sub-
cellular localization study of H2O2-induced proteins
(Inzé et al., 2012). The expression of ARACIN1 and the
highly similar paralogARACIN2 (At5g36920) was induced
(22-fold and 1.35-fold, respectively) by increased levels
of photorespiratory H2O2.

Due to the absence of representative probe sets on
the Affymetrix ATH1 microarray platform, the array-
derived expression data on both genes were rather
scarce and limited to publicly available data sets that
had been obtained from Agilent Arabidopsis V3 arrays
and diverse tiling array platforms. From these data
sets, we could deduce a down-regulation of ARACIN1
by abscisic acid and heat stress (Zeller et al., 2009) and
an up-regulation in response to Agrobacterium tumefaciens
infection (Ditt et al., 2006). To complement these array-
based abiotic stress-related data, we performed a de-
tailed expression analysis with quantitative PCR on
RNA from salt-, cold-, and heat-stressed plants (see
“Materials and Methods”). Transcripts of ARACIN1
were transiently up-regulated by cold stress (5.92-fold
after 13 h; Fig. 1A), whereas ARACIN2 expression
remained unaffected. During heat stress, transcripts of
ARACIN1 were substantially down-regulated after 6
and 12 h at 37°C, whereas ARACIN2 was up-regulated
(Fig. 1B).

To investigate the transcriptional regulation ofARACIN1
and ARACIN2 during biotic stress, we assessed their
transcript levels after infection with the necrotrophic
fungus B. cinerea. Therefore, 4-week-old Arabidopsis
plants were inoculated with B. cinerea, and locally and
systemically infected leaves were collected 48 h post-
inoculation. Only ARACIN2 was strongly induced
(16.8-fold) in locally infected leaves, and both genes
were induced in systemically infected leaves (Fig. 1C).
Further, we assessed their responsiveness toward the
defense hormones salicylic acid (SA) and methyl
jasmonate (MeJA). Plants were treated with MeJA and
benzothiadiazole (BTH), which has an analogous effect
to SA and activates the plant’s natural defense mecha-
nisms (Lawton et al., 1996; Thomma et al., 2000). After
24 h, the expression of ARACIN1 was 7-fold higher in
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BTH-treated plants than in mock-treated plants and
decreased to 3-fold after 72 h (Fig. 1D). By contrast, the
expression ofARACIN2was not affected by BTH (Fig. 1D).
The MeJA response of ARACIN1 was biphasic: after
4 h, the expression of ARACIN1 increased almost 3-fold
and reached its first maximum after 8 h, returned to
basal levels after 12 h, and reached a second maximum
after 24 h (Fig. 1E). Again, the expression of ARACIN2
remained unaffected.

Distinct Spatial Expression of ARACIN1 and
ARACIN2 Promoters

Expression characteristics were further explored by
GUS histochemical staining of three independent
transgenic plant lines containing constructs in which
the ARACIN1/ARACIN2 promoters (intergenic regions;
1,343 and 841 bp, respectively) were transcriptionally
fused to GUS (Karimi et al., 2007). The expression pat-
terns of ARACIN1 and ARACIN2were spatially distinct
(Fig. 2, top). The expression of promARACIN1:GUS was
mainly detected in young developing leaves (Fig. 2A),
hydathodes (Fig. 2B), immature flowers (Fig. 2C), and
elongating pollen tubes (Fig. 2D), whereas abundant
expression levels of promARACIN2:GUS occurred in
young and mature trichomes, hydathodes, the shoot

apical meristem, leaf primordia, the hypocotyl (Fig. 2E),
stomatal guard cells (Fig. 2F), and emerging lateral
roots (Fig. 2G). In flowers, promARACIN2:GUS expres-
sion was found in the anther-filament junction region
and female gametophytes and likely in the embryo sac
and the stigma (Fig. 2, H and I). Subsequently, ex-
pression analyses, in which both locally infected leaves
and noninfected systemic leaves were harvested 3 d post
infection (dpi) and incubated with GUS-staining solu-
tion, were performed. From this experiment, we could
deduce that ARACIN1 is barely expressed in locally
infected leaves around the site of infection, whereas it is
highly expressed in systemically infected leaves (Fig. 2,
bottom left). ARACIN2 expression could be shown in
both locally and systemically infected leaves (Fig. 2,
bottom right). The staining patterns observed are typical
for the three independent transgenic plant lines.

ARACIN Genes Are Brassicaceae-Specific Paralogs

ARACIN1 and ARACIN2 are positioned in tandem
on the complement strand of chromosome 5 and are
organized as two exons separated by one intron
(The Arabidopsis Information Resource [TAIR], http://
www.arabidopsis.org/; Fig. 3A). According to the cur-
rent genome annotation (TAIR10), the open reading

Figure 1. Transcriptional regulation of ARACIN1 and ARACIN2. Relative abundance of ARACIN1 and ARACIN2 transcripts
after cold stress (A), heat stress (B), B. cinerea infection (C), BTH treatment (D), and MeJA treatment (E) represented as fold
change relative to wild-type/unstressed or mock-treated values and normalized against ARP7 (A, B, D, and E) or ELONGATING
FACTOR1-a (EF1-a; C; see “Materials and Methods”). Data are the means6 SE (n = 3). ARACIN1 and ARACIN2 transcript levels
are represented by black bars/lines and gray bars/dotted lines, respectively. Bc loc, Local B. cinerea infection; Bc sys, systemic
B. cinerea infection; ND, not detected.
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frames (ORFs) of ARACIN1 and ARACIN2 are short
(192 and 249 nucleotides [nt], respectively) and share
80% coding sequence (CDS) identity (Fig. 3B). However,
a misannotation is assumed, because preceding the an-
notated CDS of ARACIN1 (designated D ARACIN1), a
sequence was found that was highly similar to the first
54 nt of the CDS of ARACIN2, containing a start codon
(Fig. 3B) preceded by an adequate Kozak consensus
sequence. This was confirmed by 59 RACE (data not
shown), and as such, we can assume that ARACIN1
and ARACIN2 encode peptides of 76 (8.2 kD) and 82
amino acids (8.9 kD), respectively (Fig. 3C).

We assessed the presence of ARACIN1 and ARACIN2
in other plant genomes by using the PLAZA comparative
genomics tool (Proost et al., 2014; http://bioinformatics.
psb.ugent.be/plaza/) and blasting National Center for
Biotechnology Information (http://www.ncbi.nlm.nih.
gov/blast/) and Uniprot databases (http://uniprot.org/
blast/), as well as the Camelina sativa (http://www.
camelinadb.ca/), Brassica rapa, and Brassica oleracea ge-
nomes using the Brassica Database (http://brassicadb.
org/brad/index.php/). PLAZA 3.0 integrates structural
and functional annotations of 31 species. Comparative
analysis revealed orthologs of ARACIN1 and ARACIN2
in Arabidopsis lyrata (Al7g33690 and Al7g33670, respec-
tively), and orthologs for ARACIN1 could be found

further in Eutrema salsugineum, C. sativa, B. rapa, and B.
oleracea. For ARACIN2, an ortholog could be detected in
Capsella rubella (Supplemental Fig. S1, A and B).

Analysis of the 59 sequence upstream of the ARACIN1
CDS for cis-acting regulatory elements revealed one
putative MYC2-binding site (a CACATG sequence
located at 849 nt upstream of the ARACIN1 start co-
don) that is absent in the ARACIN2 promoter. MYC2
differentially regulates jasmonic acid-responsive path-
ogen defense (including PDF1.2a) and wound response
genes (Lorenzo et al., 2004). Whereas the promoter of
ARACIN1 contains four clustered W-box elements
(-255, -227, -208, and -149), the promoter of ARACIN2
has only two dispersed W-box elements (-718 and
-246). These W-box elements are bound with high af-
finity by WRKY transcription factors known to be in-
volved in SA signaling and plant immunity (Pandey
and Somssich, 2009). The presence of multiple MYC2
and W-box elements in the promoter of ARACIN1
could explain its up-regulation by MeJA and BTH.

ARACIN1 and ARACIN2 Are Targeted to the
Endoplasmic Reticulum

Previously, we demonstrated that the N-terminal
GFP fusion of D ARACIN1, as indicated in TAIR10,

Figure 2. Tissue- and cell-specific expression of ARACIN1 and ARACIN2 visualized by histochemical GUS staining without
(top) or with (bottom) local infection of B. cinerea. A to D, promARACIN1:GUS expression was mainly found in young developing
leaves (A), hydathodes indicated by arrow head 1 (B), young developing flowers (C), and in the pollen tube indicated by arrow
head 2 (D). E to I, promARACIN2:GUS displayed a strong expression in leaf trichomes (arrow head 3), hydathodes, the shoot apical
meristem (arrow head 4), leaf primordia (arrow head 5), the hypocotyl (E), stomata (F, arrow head 6), and emerging lateral roots
(G, arrow head 7). In flowers, promARACIN2:GUS expression was found in the junction region between anther and filament (H,
arrow head 8) and female gametophytes and likely in the embryo sac (H and I, arrow head 9) and the stigma (H). Bottom
left, promARACIN1:GUS expression was mainly detected in systemically infected leaves 3 dpi with B. cinerea. Bottom right,
promARACIN2:GUS expression could be observed in both locally and systemically infected leaves 3 dpi with B. cinerea.
Ctrl, No infection; Bc loc, local B. cinerea infection; Bc sys, systemic B. cinerea infection.
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localizes to the nucleus and cytosol (Inzé et al., 2012).
Constitutive overexpression of this GFP-tagged nucleosolic
version of ARACIN1 led to a drastic phenotype char-
acterized by a severe loss in apical dominance, re-
sulting in a small bushy stature, thick and contorted
leaves, and a delayed flowering time (Supplemental
Fig. S2, A–D).
In silico prediction with SignalP3.0 (Emanuelsson

et al., 2007) deduced the presence of a signal peptide in
ARACIN2 for targeting to the secretory pathway (Fig.
3C), whereas D ARACIN1was predicted to be cytosolic.
However, adding the sequence that was found highly
similar to the first 54 nt of the CDS of ARACIN2 also
indicated the presence of an intact N-terminal signal
peptide in ARACIN1 for targeting to the secretory
pathway (Fig. 3C; Emanuelsson et al., 2007).
To determine the subcellular localization of full-length

ARACIN1 and ARACIN2, their ORFs were fused in
frame with GFP at the C terminus and placed under the
control of the constitutive Cauliflower mosaic virus 35S
(CaMV35S) promoter (Fig. 4A). The subcellular locali-
zation of ARACIN1 was assessed in at least two inde-
pendent and stable transgenic Arabidopsis lines. In the
case of ARACIN2-GFP overexpression, only one GFP-
positive transgenic Arabidopsis line could be obtained.
Strikingly, this line showed a similar phenotype as the
GFP-Δ ARACIN1OE (Supplemental Fig. S2, E and F) and
ARACIN2OE lines (see further).
As expected, the addition of the 59 sequence altered

the subcellular localization of ARACIN1 (Fig. 4B). Both

localization patterns of ARACIN1-GFP (Fig. 4B, 1 and 2)
and ARACIN2-GFP (Fig. 4B, 3 and 4) showed charac-
teristic features of endoplasmic reticulum (ER) localiza-
tion, such as a reticular pattern and the perinuclear ring
(Fig. 4B, 3 and 4), indicating that both ARACIN1 and
ARACIN2 are presumably targeted to the ER. This re-
ticular pattern could be further strengthened by coinfil-
tration inNicotiana benthamiana of ARACIN1-GFP (Fig. 4C,
1–3) or ARACIN2-GFP (Fig. 4C, 4–6) with an ER-mCherry
marker created by Nelson et al. (2007).

Interestingly, while expression of the nucleocytosolic-
targeted GFP-Δ ARACIN1 drastically perturbed normal
growth and development (Supplemental Fig. S2, A–D),
constitutive ER-localized ARACIN1-GFP overexpression
plants looked phenotypically similar to the wild type
(data not shown). Mistargeting of ARACIN1 could
perturb the cellular homeostasis, which, in turn, could
lead to pleiotropic defects in normal growth and
development.

ARACINs Are Typical AMPs

Both ARACINs strikingly share general character-
istics of plant AMPs. First, ARACIN1 and ARACIN2
are small (8.2 and 8.9 kD), hydrophobic (39% and 40%
total hydrophobic ratios), and cationic (+4 and +2 total
net charge) peptides. These features are a prerequisite
for the antimicrobial activity of most AMPs that is
mainly based on their ability to disturb the pathogen’s

Figure 3. Sequence characteristics of ARACIN1 and ARACIN2. A, Genomic position and gene organization of ARACIN1 and
ARACIN2. The 59 region upstream of ARACIN1 that has a high sequence identity with the 59 CDS of ARACIN2 is depicted by a black
box. B, Sequence alignment of ARACIN1 and ARACIN2 revealing a 54-nt sequence upstream of the annotated start codon (asterisk) of
ARACIN1 that is highly similar to the 59 CDS of ARACIN2. C, Sequence alignment of the translated full-length ARACIN1 with the
protein sequence of ARACIN2. The predicted signal peptide (SignalP 3.0; Emanuelsson et al. ,2007), the first Met according to the
TAIR annotation (asterisk), the prodomain, and the highly conserved C-terminal domain (see further) are indicated, as well as the first
and second exon. Identical and similar residues are shaded black and gray, respectively. Sequence data were retrieved from TAIR
(TAIR10; http://www.arabidopsis.org/). TIR, Toll/Interleukin1 receptor; NBB, nucleotide-binding site; LRR, Leu-rich repeat.
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membrane via electrostatic and hydrophobic interac-
tions (Shai, 2002; Thevissen et al., 2003). Like nearly all
AMPs, ARACIN1 and ARACIN2 have a defined exon/
intron structure, with the first exon encoding the signal
peptide for targeting to the secretory pathway and the
second exon coding for the mature peptide (Silverstein
et al., 2005; Fig. 3, A and B).

AMPs are often produced as prepropeptides in
which the predomain functions as a signal peptide that
is removed during secretion. The prodomain is often
acidic and thought to neutralize and, thus, inactivate
the basic mature peptide when it is still intracellular.
Once secreted, this propeptide is proteolytically re-
moved, thereby activating the mature peptide (García-
Olmedo et al., 1998). As the C-terminal regions of both
ARACIN peptides were highly conserved (Fig. 3C),
they could represent the mature domains necessary for
antimicrobial activity. The putative prodomains of
ARACIN1 and ARACIN2, which are flanked by their
predomain (signal peptide) and mature domain, are
acidic (pI 5.96 and 3.42, respectively), and thus these
regions could function in the neutralization of the cat-
ionic mature domain (pI 8.96 and 9.38, respectively). The
biochemical properties of these putatively different forms
are given in Supplemental Table S1.

To assess whether ARACINs are processed in vivo,
we immunodetected GFP-tagged peptides in two inde-
pendent transgenic Arabidopsis ARACIN1-GFPOE plants
and one ARACIN2-GFPOE plant (Fig. 4D). In the case of
ARACIN1-GFP, the anti-GFP antibody recognized
four protein bands that correspond in size with the
putative preproARACIN1-GFP (approximately 35 kD),
the proARACIN1-GFP (approximately 30 kD), the mature
ARACIN1-GFP (approximately 31 kD), and free GFP
(approximately 27 kD). This was also the case for
ARACIN2-GFP. The mature ARACIN1 and ARACIN2
domains had an estimated size of approximately 4 kD,
of which the size is similar to that of the conserved
C-terminal region (Fig. 4D; Supplemental Table S1).

In Vitro Antifungal Activity against A. brassicicola
and B. cinerea

Next, we assessed the potential antifungal activity of
ARACIN1 and ARACIN2 by an in vitro antifungal
bioassay. Mature forms of ARACIN1 and ARACIN2
produced by chemical synthesis (Supplemental Table S1)
were tested against A. brassicicola, B. cinerea, Fusarium
graminearum, Sclerotinia sclerotiorum, and yeast (Saccharomyces

Figure 4. Subcellular targeting and processing of ARACIN1 and ARACIN2. A, Schematic representations of the expressed GFP-
tagged peptides with their putative prepropeptide structure used to determine the subcellular localization and processing of
ARACIN1 and ARACIN2 in transgenic Arabidopsis lines. The first Met (M) of ARACIN1 according to the TAIR10 annotation (TAIR;
http://www.arabidopsis.org/) is indicated with an asterisk. B, Subcellular localizations of the GFP-tagged ARACIN peptides in
2-week-old transgenic Arabidopsis ARACIN1-GFPOE (1 and 2) and ARACIN2-GFPOE (3 and 4) lines. GFP fluorescence (1 and 3)
and bright-field images (2 and 4) are depicted. Perinuclear ring is indicated with a white arrow head. C, Coexpression of the GFP-
tagged ARACIN peptides and ER-mCherry marker in 3-week-old agroinfiltrated N. benthamiana leaf epidermal cells. ARACIN1-
GFP (1–3) or ARACIN2-GFP (4–6) lines with an ER-mCherry marker. GFP fluorescence (1 and 4), red fluorescent protein
fluorescence (2 and 5), and merged images (3 and 6) are depicted. D, Western-blot analysis of leaf extracts of 2-week-old in-
dependent (1 and 2) and stable transgenic ARACIN1-GFPOE (above), ARACIN2-GFPOE (below), and GFPOE lines using an anti-GFP
antibody. The different forms (prepropeptide [prepro], propeptide [pro], and mature [m]) are indicated. Bars = 10 mm.
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cerevisiae) by means of a microtiter broth dilution assay
(Fig. 5; Supplemental Figure S3). Whereas the mature
form of ARACIN1 (mARACIN1) efficiently inhibited
the growth of A. brassicicola starting at a concentration
of 1 mg mL–1, with a 50% growth inhibitory concentration
(IC50) value of 5.46 mg mL–1, the growth of the B. cinerea
was almost completely inhibited (95.7%) at a concen-
tration of 10 mg mL–1 mARACIN1 with an IC50 value of
3.05 mg mL–1. In the case of mARACIN2, the IC50
value against A. brassicicola was significantly lower
(1.55 mg mL–1). Likewise, the antifungal activity of
mARACIN2 against F. graminearum and yeast (IC50
values of 9.06 and 0.76 mg mL–1, respectively) was re-
markably increased in comparison with mARACIN1
(IC50 values of 28.17 and 6.41 mgmL–1, respectively; Fig. 5).
Subsequently, antifungal activity of both ARACIN
peptides against S. sclerotiorum was similar, with effi-
cient IC50 values of 0.73 mg mL–1 (mARACIN1) and
0.49 mg mL–1 (mARACIN2).

ARACIN1 Overexpression Leads to a Decreased Sensitivity
to A. brassicicola and B. cinerea Infections

To assess the effect of ARACIN overexpression on plant
development, we made constitutive overexpression lines

with the CaMV35S promoter. Northern-blot analysis
revealed that several independent transgenic lines
contained elevated levels of the ARACIN1/ARACIN2
transcripts (Fig. 6B). Whereas all ARACIN1OE lines were
phenotypically similar to wild-type plants, overexpression
of ARACIN2 drastically affected growth and development
(Fig. 6A). After normal seed germination and cotyledon
expansion,ARACIN2OE plants showed a severely retarded
growth, curled dark leaves, and delayed flowering
(Fig. 5B), resembling the observed phenotype of the
ARACIN2-GFPOE line (Supplemental Fig. S2, E and F).

To assess the effect of increased ARACIN levels on
the plant susceptibility to fungal infection, we performed
disease assays with the two necrotrophic pathogens
A. brassicicola and B. cinerea. Because of the drastic
phenotype of the ARACIN2OE lines, no accurate scor-
ing of disease symptoms was possible. Therefore, ho-
mozygous ARACIN1OE plants from three independent
transgenic events (Fig. 6B) were assayedwithA. brassicicola
and B. cinerea by drop inoculation (5 3 105 spores mL–1)
of 4-week-old Arabidopsis plants. Compared with the
wild type, ARACIN1OE lines had an increased resis-
tance phenotype after inoculation with A. brassicicola.
A drastic reduction of disease symptoms was visible
4 d after infection: the mean lesion size on ARACIN1OE

leaves was 50% smaller than that on wild-type leaves

Figure 5. Inhibitory effects of mARACIN1 and mARACIN2 on growth of A. brassicicola, B. cinerea strain B05-10, F. graminearum,
S. sclerotiorum, and yeast. Data are represented as a mean (n = 3). The antifungal assays were done in triplicate, with similar
results. ARACIN1 and ARACIN2 are depicted with white and black dots, respectively.
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(Fig. 6C). Moreover, a statistically significant reduction
in B. cinerea lesion size was observed in the ARACIN1OE

lines (Fig. 6C).

DISCUSSION

Gene Expression and Genome Organization

Here, we have identified two unique cationic and hy-
drophobic AMPs. Detailed expression analyses showed
that the ARACIN genes are differentially regulated by
abiotic and biotic stress conditions. It is well known that
abiotic stresses, such as high light, high salinity, drought,
low and high temperature, or wounding, can also
modulate the expression of biotic defense-related
genes, including plant AMPs (Hon et al., 1995; Broekaert
et al., 2000; Zeier et al., 2004; van Loon et al., 2006; Seo
et al., 2008). ARACIN1 and ARACIN2 are induced by
photorespiratory H2O2, a signaling molecule produced

during abiotic and biotic stresses (Fujita et al., 2006).
Interestingly, ARACIN1 is significantly induced by
cold stress. The induction of plant AMPs during cold
acclimation has been reported previously in winter
cereals to confer disease resistance in addition to
freezing tolerance (Nakajima and Abe, 1996; Gaudet
et al., 1999).

In addition, the cell- and tissue-specific expression
patterns of both genes are quite distinct. The differential
transcriptional regulation of the ARACIN genes could
be attributed to their divergent promoters that have a
low incidence and small overlap of cis-regulatory ele-
ments, and thus these genes are probably under the
control of different transcriptional regulators. Duplicated
genes (i.e. paralogs) are only retained in the genome
when they have acquired different or complementary
functions (Tiffin and Moeller, 2006). Therefore, paralogs
have often different expression patterns due to changes in
the regulatory elements of their promoter region (Force

Figure 6. Expression analysis and phenotypes of the ARACINOE lines. A, Representative images of the ARACIN1OE and
ARACIN2OE lines. Left, One 1-month-old wild-type (WT), one ARACIN1OE (A), and two ARACIN2OE (B and C) lines. Middle,
One 4-week-old wild-type and two independent ARACIN2OE lines. Right, Enlarged image of a 4-week-old ARACIN2OE plant.
B, Northern-blot analysis of the ARACIN1OE and ARACIN2OE lines. Top, ARACIN1 expression. Bottom, ACTIN expression level.
C, Lesion sizes on leaves of wild-type plants and three independent ARACIN1OE lines measured several days after inoculation
with A. brassicicola and B. cinerea strain B05-10. Data presented are the means of at least 50 lesions. Error bars represent 95%
confidence intervals (n = approximately 50). For each assay, the average lesion diameter of wild-type and mutant plants were
compared with a Student’s t test (*P , 0.05, **P , 0.01, and ***P , 0.001). The disease assays were done in duplicate, with
similar results. Col-0, Ecotype Columbia; OE, overexpression.
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et al., 1999; Altschmied et al., 2002; Prince and Pickett,
2002).
Recently, 1,789 Brassicaceae-specific genes (including

the ARACIN genes) have been identified by a stepwise
BLAST filtering approach and are characterized by their
short peptide length (77 amino acids), few introns, low
guanine-cytosine content, unknown function, few paralogs,
enrichment for secretory peptides, and increased evo-
lutionary rates. Remarkably, these Brassicaceae-specific
genes are enriched for defensin-like genes and other
Cys-rich peptides, such as thionins. These defensin-like
genes show higher frequencies of tandem duplications,
the major mechanism for the generation of lineage-
specific genes. Furthermore, these genes are often re-
sponsive to biotic and abiotic stimuli (Donoghue et al.,
2011).
Within the Arabidopsis genome, both genes are

positioned in tandem and are flanked by pathogen
defense-related genes. The gene encoding a disease
resistance protein belonging to the Toll/Interleukin1
receptor-nucleotide-binding site-Leu-rich repeat class is
positioned upstream of ARACIN1, and a thionin gene
(THIONIN2.2) is positioned downstream of ARACIN2.
Nucleotide-binding site-Leu-rich repeat resistance genes
are part of a large multigene family that might be in-
volved in the first line detection of pathogens (McHale
et al., 2006). Defense-related genes are often positioned
in gene clusters, allowing a coordinated expression
when plant defense is activated (Eckardt, 2007). More-
over, genes that are up-regulated during biotic stress,
including Cys-rich AMPs, did expand largely by tan-
dem duplications (Silverstein et al., 2005; Hanada et al.,
2008).

Molecular Properties

ARACIN1 and ARACIN2 encode small, cationic, and
hydrophobic peptides and are expressed in peripheral
cell layers, such as stomata, hydathodes, and roots tissues,
representing the primary entry points for pathogens. In
addition, both genes are expressed in reproductive tissues
that are known to be enriched in AMPs (Jones-Rhoades
et al., 2007; Punwani et al., 2007). As pollen grains are
often coated with bacterial and fungal spores, AMPs
are suggested to protect the female gametophyte during
the fertilization phase (Cordts et al., 2001). In addition,
an alternative role for plant AMPs has been demon-
strated in Torenia fournieri and Arabidopsis, in which
secreted defensin-like, Cys-rich polypeptides act as
pollen tube attractants (Okuda et al., 2009; Takeuchi
and Higashiyama, 2012). In this respect, it is interest-
ing to note that ARACIN1 and ARACIN2 are expressed
in the pollen tube and in the female gametophyte,
respectively.
We could further demonstrate that ARACIN1 and

ARACIN2 are produced as prepropeptides, which is
often the case for AMPs (García-Olmedo et al., 1998).
However, the exact cleavage sites and hence the exact
nature of the different domains of the ARACIN peptides

still need to be determined by amino acid sequencing
of the bands observed in the ARACIN1-GFP and
ARACIN2-GFP overexpression lines.

Both localization patterns of ARACIN1-GFP and
ARACIN2-GFP (Fig. 4B) showed characteristic features
of ER localization. However, because both peptides lack
ER retention signals, they are presumably targeted to
the extracellular space. As the fluorescent properties of
GFP are lost in the apoplast due to an acidic pH, we
could not directly confirm that the ARACIN-GFP peptides
are secreted into the extracellular matrix. To circumvent
the problems associated with the detection of GFP-
tagged proteins in the apoplastic space, fusions with
the yellow fluorescent protein Venus, a pH-insensitive
variant of GFP, and with the red fluorescent protein
were made and are currently being investigated.

Secondary structure prediction with the Protein/
Homology/analogY Recognition Engine (PHYRE)
Web server (Bennett-Lovsey et al., 2008; Kelley and
Sternberg, 2009), which uses template-based homology
modeling to construct structural predictions, revealed
the presence of two a-helices at the C terminus of
ARACIN1 (Supplemental Fig. S4A) and a and b con-
tents in ARACIN2 (Supplemental Fig. S4C). Moreover,
homology-based three-dimensional models of ARACIN1
and ARACIN2 were constructed with PHYRE2.0 (in-
tensive mode; Supplemental Fig. S4, D and E). Although
no structural matches with a high confidence level could
be detected, most predictions had a fold occurring in
proteins with a putative defense role. AMPs are rapidly
evolving molecules due to pressure imposed by com-
petition among phytopathogens (Silverstein et al.,
2005). In other words, the sequence conservation be-
tween AMPs is rather limited and, therefore, may ex-
plain why only structural matches were retrieved with a
low confidence level. Nevertheless, ARACIN1 showed
an approximately 42% similarity (best hit; confidence
level of 11%) with the 48-amino acid residue neurotoxin-I
of sea anemone (Stichodactyla heliantus; Structural Clas-
sification of Proteins code d2sh1a; Protein Data Bank
code 2SH1; Fogh et al., 1990; Wilcox et al., 1993) that
belongs to the defensin superfamily and acts on neu-
ronal voltage-gated sodium channels of Crustaceae
(Supplemental Fig. S4, B and D). ARACIN2 predomi-
nantly retrieved matches with protease inhibitors (data
not shown). This is not surprising, because several
AMPs have been reported to act as protease inhibitors
(Kim et al., 2009). Moreover, in response to pathogen
attack, plants secrete inhibitory peptides that inactivate
the proteinases produced by phytopathogenic micro-
organisms (Ryan, 1990).

We further assessed the potential of both ARACIN
peptides to protect plants against necrotrophic patho-
gens. Transgenic Arabidopsis plants with constitutive
ARACIN1 overexpression displayed enhanced resistance
against the necrotrophs A. brassicicola and B. cinerea.
Although A. brassicicola is considered an incompatible
fungal pathogen of Arabidopsis, the molecular basis
behind the restriction of the A. brassicicola infection is of
great interest. An incompatible Arabidopsis-A. brassicicola
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interaction triggers a strong systemic response, in-
ducing the up-regulation of the defense genes PATHO-
GENESIS RELATED-1 and PDF1.2a (Penninckx et al.,
1996). The current knowledge of the molecular mech-
anisms underlying the interaction between A. brassicicola
and members of the Brassicaceae family remains rather
limited. Several studies have identified important players
of the incompatible interaction of the Arabidopsis-
Alternaria spp. pathosystem, including antimicro-
bial compounds (Thomma et al., 1999; Schenk et al.,
2003; Oh et al., 2005; Schuhegger et al., 2006; Nafisi
et al., 2007). In addition, in vitro antifungal bioas-
says with chemically synthesized mARACIN1 and
mARACIN2 revealed their antifungal activities against
A. brassicicola, B. cinerea strain B05-10, F. graminearum,
and S. sclerotiorum.

Several examples of AMP overexpression conferring
enhanced tolerance to abiotic stresses are known (Mirouze
et al., 2006; Lee and Hwang, 2009). As ARACIN1 is
transcriptionally regulated by abiotic stresses, we assessed
whether the ARACIN1OE lines displayed an improved
tolerance against salt stress (50 and 100 mM NaCl) and
oxidative stress (2 mM methyl viologen). However, no
statistical significant differences between ARACIN1OE

lines and appropriate controls (scored by measuring
root growth and leaf area) were found (data not
shown).

CONCLUSION

Here, we characterized two unique Brassicaceae-
specific peptides displaying antifungal activities against
necrotrophic pathogens. Both ARACIN1 and ARACIN2
are typical AMPs but are structurally unrelated to
known plant AMPs. In planta modulation of ARACIN1
expression levels enhanced the resistance against these
pathogens. As plant diseases caused by A. brassicicola
and B. cinerea infections result in major crop losses, the
use of ARACIN peptides in transgenic Brassicaceae spe-
cies could be an alternative strategy to improve disease
resistance.

MATERIALS AND METHODS

Plant Growth Conditions and Treatments

For in vitro experiments, Arabidopsis (Arabidopsis thaliana) ecotype Columbia
plants (wild type) were, unless stated otherwise, grown until stage 1.04 (fourth
leaf 1 mm in size; Boyes et al., 2001) on one-half-strength Murashige and Skoog
medium (Duchefa Biochemie; http://www.duchefa.com/), 1% (w/v) Suc, and
0.7% (w/v) agar, pH 5.7, at 21°C and under a 16-h-light/8-h-dark photoperiod,
150 mmol m–2 s–1 light intensity, and 50% relative humidity. For the cold stress
treatment, 3-week-old plants were transferred to 4°C in a controlled environ-
ment chamber (Weiss technik; http://www.weiss-gallenkamp.com/) and a pool
of 10 plants was harvested at each time point, whereas for the heat stress ex-
periment, plants were transferred to a thermostat cabinet (Lovibond; http://
www.lovibond.com/) at 37°C, and three pools of 35 plants were harvested at
each time point. For the BTH treatment, plants were sprayed with 350 mM BTH
(BION 50 WG, a gift from Syngenta Agro S.A. Spain) or with water (mock),
whereas for the MeJA treatment, plants were sprayed with 100 mM MeJA con-
taining 0.001% (v/v) Triton X-100 or with 0.001% (v/v) Triton X-100 in water
(mock). A pool of 32 plants was harvested at each time point for each treatment.

Two independent experiments were carried out for all treatments (independent
sets of plants sown and treated on different dates).

59 RACE

Total RNA was extracted from wild-type plants with TRI Reagent (Mo-
lecular Research Center; http://www.mrcgene.com/). 59 RACE-ready com-
plementary DNA (cDNA) was made with the supplied Smart II oligo and
Powerscript reverse transcriptase (BD SMART RACE cDNA Amplification
Kit, BD Biosciences; http://www.bdbiosciences.com/), and the reaction was
run with the gene-specific primers (Supplemental Table S1) and the supplied
universal primer mix. Nested PCR reaction products were gel purified with
the Nucleospin gel extraction kit (Macherey and Nagel; http://www.mn-net.
com/) and sequenced after cloning into the pENTR/D-TOPO vector (Invitrogen;
http://www.invitrogen.com/).

Production of Transgenic Lines

Full-length ORFs (with and without stop codon) were PCR amplified from
first strand cDNA of wild-type plants with the high-fidelity Phusion DNA
polymerase (Finnzymes OY; http://www.finnzymes.fi/) with gene-specific
primers extended with attB sites for subsequent Gateway cloning into
pDONR221 (Invitrogen; Supplemental Table S1). GFP fusions were con-
structed within the binary destination vector pK7FWG2 (Karimi et al., 2007),
resulting in a C-terminal GFP fusion under the control of the CaMV35S pro-
moter. Overexpression clones were generated within the binary destination
vector pK7WG2 (Karimi et al., 2007). To obtain promoter-GUS fusion con-
structs, the intergenic regions of ARACIN1 (1,343 bp) and ARACIN2 (841 bp)
were PCR amplified from genomic DNA with promoter-specific primers ex-
tended with attB sites for subsequent Gateway cloning (Supplemental Table
S1). PCR fragments were cloned into Gateway entry vectors and subcloned
into the binary destination vector pKGWFS7 (Karimi et al., 2007). All con-
structs were transformed into the Agrobacterium tumefaciens strain C58C1
harboring the virulence plasmid MP90. Arabidopsis wild-type plants were
transformed via A. tumefaciens floral dip (Clough and Bent, 1998). Homozygous
lines with a single transfer DNA locus were selected via segregation analysis for
hygromicine resistance, and transgene expression was monitored via northern
analysis and quantitative reverse transcription (qRT)-PCR analysis for the
overexpression lines, GFP fluorescence for the GFP fusion lines, or GUS
staining for the promoter-GUS lines.

Fluorescence Microscopy

The localization in Nicotiana benthamiana as well as in stable transformed
Arabidopsis was analyzed as described previously (Inzé et al., 2012). In ad-
dition to the GFP constructs (see above), an ER-targeted mCherry (Nelson
et al., 2007) was used.

For fluorescence microscopy, a confocal microscope 100M with software
package LSM 510 version 3.2 was used (Zeiss; http://www.zeiss.com/),
equipped with a 633 water-corrected objective (numerical aperture, 1.2) to
scan the leaf epidermis and underlying cell layers. GFP fluorescence was
imaged in a single-channel setting with 488 nm for GFP excitation, whereas
mCherry fluorescence was imaged in a single-channel setting with 543 nm for
mCherry excitation.

Promoter GUS Analyses

Transgenic 2-week-old seedlings grown in vitro on one-half-strength
Murashige and Skoog plates or organs from mature plants grown in soil
were harvested and incubated overnight in 90% (v/v) acetone at 4°C. Acetone
was removed, and samples were washed with nullisomic-tetrasomic (NT)
buffer (100 mM Tris and 50 mM NaCl, pH 7.0). Next, the NT buffer was
replaced with a ferricyanide solution (0.2 mM ferricyanide in NT buffer), and
samples were incubated in the dark at 37°C for at least 1 h. Afterward, the
ferricyanide solution was replaced with the GUS-staining solution containing
0.02 mM 5-bromo-4-chloro-3-indolyl-D-glucuronide in ferricyanide solution.
Samples were placed in the dark at 37°C, incubated for 6 h or overnight, and
stored in 100% lactic acid. Samples were photographed with a stereomicro-
scope (Stemi SV11; Zeiss) or with a Nomarski differential interference contrast
microscope BX51 (Olympus; http://www.olympus.com/).
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qRT-PCR Analyses

For the abiotic stress expression analyses, RNA isolation, cDNA synthesis,
and qRT-PCR analyses were carried out as described in Vanderauwera et al.
(2007) with gene-specific primers (Supplemental Table S2). For ARACIN1 and
ARACIN2, gene-specific primers were designed with the Beacon Designer
software (PremierBiosoft; http://www.premierbiosoft.com/; Supplemental
Table S2). ARP7, encoding an actin-related protein (At3g60830), was used as a
reference gene. The primers for this gene were designed with the Universal
ProbeLibrary Assay Design center ProbeFinder software (Roche; https://
www.roche-applied-science.com/; Supplemental Table S1). For the qRT-PCR
analyses on Botrytis cinerea-infected leaves, RNA extraction, DNase treatment,
cDNA synthesis, and qRT-PCR experiments were done as described by Mirouze
et al. (2006), and EF1-awas used as a reference gene. Relative transcript abundance
of ARACIN1 and ARACIN2 was determined using the Roche LightCycler 480
system and the LC480 SYBR Green I Master kit (Roche Diagnostics). Measure-
ments were taken for three biological and three technical repeats. The amplification
data were analyzed using the second derivative maximum method, and resulting
crossing point values were converted into relative expression values using the
comparative cycle threshold method.

Protein Extraction and Western-Blot Analyses

Total protein extracts were prepared by grinding leaf material (100 mg) in
200 mL of extraction buffer (100 mM HEPES [pH 7.5], 1 mM EDTA, 10 mM

b-mercaptoethanol, and 1 mM phenylmethanesulfonylfluoride) and a protease
inhibitor cocktail (COMPLETE; Roche). Insoluble debris was removed by
centrifugation at 20,800g for 15 min at 4°C. Protein concentrations were de-
termined with the Bradford method (Zor and Selinger, 1996). Proteins (10 mg)
were separated on a 12.5% SDS-PAGE gel and transferred to a P membrane
(Millipore; http://www.millipore.com/). Filters were blocked in 3% (v/v)
milk powder in 25 mM Tris-Cl (pH 8), 150 mM NaCl, and 0.05% Tween 20
for at least 1 h at room temperature and incubated overnight at 4°C with anti-
GFP (1:5,000) antibody in blocking buffer (JL-8; Clontech Laboratories; http://
www.clontech.com/). Antigen-antibody complexes were detected with
horseradish peroxidase-conjugated IgG diluted 1:10,000 (Amersham Biosci-
ences) by means of the Western Lightning kit (GE Healthcare; http://
gehealthcare.com/). Images were taken using the Biorad Image Lab 3.0 software.

In Vitro Antifungal Activity Assays

Chemically synthesized mARACIN1and mARACIN2 peptides were pur-
chased (greater than 98% purity) from Genscript (http://www.genscript.com/).
Stock solutions of 2 3 107 spores mL–1 of Alternaria brassicicola, B. cinerea strain
B05-10, and Fusarium graminearum were diluted in one-half-strength potato
dextrose broth (PDB) to a final concentration of 2 3 104 spores mL–1. In the case
of Sclerotinia sclerotiorum, fragments from the edges of the mycelium lawns were
transferred to 50 mL of one-half-strength PDB and incubated for 24 to 48 h at
21°C with continuous shaking. Aliquots (500 mL) of these cultures were
transferred to 2-mL polypropylene microcentrifuge tubes with o-ringed screw
caps, each containing five glass beads (1-mm diameter). The mycelium was
fragmented by high-speed reciprocal shaking using a Phastprep apparatus
(Bio 101/Savant). The obtained mycelium fragment suspensions were 100-fold
diluted for use in antifungal activity assays. For yeast (Saccharomyces cerevisiae),
cell cultures (5 3 104 cells mL–1) were prepared in POTATO DEXTROSE
BROTH:YEAST PETONE DEXTROSE medium (95:5) as described previously.
After addition of 196-mL aliquots of these spore/cell suspension dilutions or
fragmented mycelium to 4 mL of 2-fold dilution series of mARACIN1and
mARACIN2 in dimethyl sulfoxide (DMSO; starting from a 100 mg mL–1 stock
solution) in microtiter plates, the plates were incubated at 23°C for 48 to 72 h or at
30°C for 48 h in the case of yeast. DMSO was used as a negative control. Fungal
growth was evaluated both microscopically and by measuring the optical density
at 600 nm. Each fungus was tested in duplicate in the microtiter plates, and each
assay was repeated twice. For each assay, the average background-corrected op-
tical density at 600 nm of each dilution and the DMSO control were compared
with a Student’s t test. Dose response curves were calculated to obtain IC50 values.
To this end, average background-corrected optical densities were converted to
percent inhibition, whereas doses were log transformed. Then, either a four-
parameter logistic model or a simple linear model was fitted to the data using the
drc package in R. The choice of the model was determined by the shape of the dose
response curve.

Disease Assays

Mutant and wild-type Arabidopsis plants were grown in soil (DCMZaai-en
stekgrond; De Ceuster Meststoffen N.V.; http://www.dcm.com/) in a growth
chamber with at 21°C/18°C day/night temperature and 75% relative hu-
midity under a 12-h-light/12-h-dark photoperiod with a light intensity of
approximately 120 mmol m–2 s–1. Four-week-old plants were inoculated with
A. brassicicola strain MUCL20297 (Mycothèque Université Catholique de
Louvain) or B. cinerea strain B05-10. To this end, a 23 107 spores mL–1 solution
of the pathogen was diluted in one-half-strength (12 g L–1) PDB in water to a
final concentration of 5 3 105 spores mL–1. After spotting 5 mL of the diluted
spore solution on two leaves per plant, the plants were placed in a humid
chamber (100% relative humidity).

For the B. cinerea infection expression analyses, eight leaves from noninoculated
plants (control) and eight leaves from systemically or locally infected leaves of
inoculated plants were collected 48 h post infection. For each treatment, four
replicas were harvested and frozen in liquid nitrogen.

For the disease assay, symptoms were scored by measuring and calculating
average diameters of the necrotic lesions on various days after pathogen in-
oculation. This disease assay was repeated twice with an average of 220 plants
per assay. For each assay, the average lesion diameter on leaves of wild-type
and mutant plants was compared with a Student’s t test.

Sequence data from this article can be found in the GenBank/EMBL data
libraries under accession numbers 833660 and 833661.
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A Presence in Arabidopsis lyrata and Capsella rubella 
 

 
 
 

B Presence in Brassica rapa 
 

 
 
 

Supplemental Figure S1. Presence of ARACIN1 and ARACIN2 in other members of the 
Brassicaceae family. 
(A) Multiple protein sequence alignment of ARACIN1 and ARACIN2 with the A. lyrata (Al7g33690 and 
Al7g33670, respectively) and Capsella rubella orthologs identified with the PLAZA comparative 
genomics tool (Proost et al., 2014). Identical and similar residues are shaded dark and light blue, 
respectively. 
(B) Multiple sequence alignments of ARACIN1 and ARACIN2 with the B. rapa orthologs identified using 
the Brassica Database (BRAD; http://brassicadb.org/brad/index.php/). 
 

 
 

http://brassicadb.org/brad/index.php/


 
 

Supplemental Figure S2. Several independent GFP-positive 

transgenic lines that constitutively express GFP-∆ ARACIN1 or 

ARACIN2-GFP and displayed severe abnormal morphologies.  

(A) Two-week-old primary GFP-∆ ARACIN1OE transformant with a callus-

like morphology. 

(B and C) primary GFP-∆ ARACIN1OE transformant (B, 50-day-old; c, 94-

day-old) with bushy stature, thick contorted leaves and seedless siliques.  

(D) Three-week-old primary GFP- ∆ ARACIN1OE line displaying a loss in 

apical dominance and curled leaves. 

(E and F) Unique GFP-positive ARACIN2-GFPOE plant with severe 

developmental defects. 

  



 

 

Supplemental Figure S3. Antifungal activities of mARACIN1 and mARACIN2 

against A. brassicicola, B. cinerea B05-10, F. graminearum and S. sclerotiorum.  

Pictures were taken 3 dpi. 



 
 
Supplemental Figure S4. Secondary and tertiary structure predictions of ARACIN peptides. 

(A) Secondary structure prediction of ARACIN1 by PHYRE (Protein Homology/analogY Recognition 

Engine; Bennett-Lovsey et al., 2008; Kelley and Sternberg, 2009). 

(B) Alignment of ARACIN1 and the 48-amino acid residue neurotoxin-I from Stichodactyla heliantus 

(Fogh et al., 1990; Wilcox et al., 1993). 

(C) PHYRE secondary structure prediction of ARACIN2. 

(D) Tertiary structure ab initio model of ARACIN1 predicted by PHYRE 2.0 (intensive mode). The 

experimental determined tertiary structure of neurotoxin-I is depicted (Protein Data Bank (PDB) code 

2SH1; Fogh et al., 1990; Wilcox et al., 1993). 

(E) Tertiary structure ab initio model of ARACIN2. Image colored by rainbow N → C terminus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Table 1. Peptide characteristics of the putatively different forms of ARACIN1 

and ARACIN2. 

The total hydrophobic ratio, total net charge and isoelectric point (pI) of the putative different 

forms of ARACIN1 and ARACIN2 were calculated with the peptide predictor tool of the 

Antimicrobial Peptide Database (ADP; http://aps.unmc.edu/AP/main.php/; Wang and Wang 

(2004)). The sequence length and molecular weight are indicated in number of amino acids 

(AA) and in kDa, respectively. The predicted signal peptide (SignalP 3.0; Emanuelsson et al. 

(2007)) is underlined and the sequence of the putative mature peptide is indicated in bold. kDa, 

kilodalton. 

 

Name  Sequence  Length 

(AA) 

Molecular 

weight 

(kDa) 

Hydrophobic  

ratio 

Net 

charge 

pI 

preproARACIN1 MAMKTSHVLLLCLMFVIGFVE

ARRSDTGPDISTPPSGSCGASI

AEFNSSQILAKRAPPCRRPRL

QNSEDVTHTTLP 

76 8.2 39% +4 8.6

6 

proARACIN1 RRSDTGPDISTPPSGSCGASIAE

FNSSQILAKRAPPCRRPRLQN

SEDVTHTTLP 

54 5.7 25% +3 8.9

5 

mARACIN1 GSCGASIAEFNSSQILAKRAP

PCRRPRLQNSEDVTHTTLP 

40 4.2 32% +3 8.9

6 

preproARACIN2 MAMKNTSHVLLLSLLLCLMFV

IGLVEASIPDDDMGPAIYTPPS

GSCGAPISKYDFQVLAKRPPP

CRRPRLENTEDVTHTTRP 

82 8.9 40% +2 6.7

0 

proARACIN2 SIPDDDMGPAIYTPPSGSCGAP

ISKYDFQVLAKRPPPCRRPRL

ENTEDVTHTTRP 

55 5.9 25% +1 6.4

9 

mARACIN2 GSCGAPISKYDFQVLAKRPPP

CRRPRLENTEDVTHTTRP 

39 4.3 25% +4 9.3

8 
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Supplemental Table S2. PCR primers used. 

 

Primer name Gene Sequence   

At5g36925-TAIR-FW  ARACIN1 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGTTTGTGATTGGTTTTGTAGAAGCTAG cloning / genotyping 

At5g36925-RV ARACIN1 GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAAGGAAGTGTAGTGTGGGTCAC cloning / genotyping 

At5g36925-no stop-RV ARACIN1 GGGGACCACTTTGTACAAGAAAGCTGGGTCAGGAAGTGTAGTGTGGGTCACATCTTC cloning / genotyping 

PAt5g36925-FW ARACIN1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTAACTTATTTGCAGGGAAC cloning / genotyping 

PAt5g36925-RV ARACIN1 GGGGACCACTTTGTACAAGAAAGCTGGGTCCAAACAAAGCAGAAGAAC cloning / genotyping 

PAt5g36925-SIM-RV ARACIN1 GGGGACCACTTTGTACAAGAAAGCTGGGTCTGGCTCTTCTTATCTCAAG cloning / genotyping 

PAt5g36920-FW ARACIN2 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAAACTAGAAATGTTTCAAGAAG cloning / genotyping 

PAt5g36920-RV ARACIN2 GGGGACCACTTTGTACAAGAAAGCTGGGTCTGGCTCTTCTATCTTAAATAAC cloning / genotyping 

At5g36925-5UTR-FW ARACIN1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGATGAAGACATCAC cloning / genotyping 

At5g36920-FW ARACIN2 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGATGAAGAATACATCAC cloning / genotyping 

At5g36920-RV ARACIN2 GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAAGGTCGTGTAGTATGGGTC cloning / genotyping 

At5g36920-NS-RV ARACIN2 GGGGACCACTTTGTACAAGAAAGCTGGGTCAGGTCGTGTAGTATGGGTCAC cloning / genotyping 

At5g36925-FW-SyBr ARACIN1 GTAGAAGCTAGAAGATCAGATAC qRT-PCR 

At5g36925-RV-SyBr ARACIN1 TCAAGGAAGTGTAGTGTGG qRT-PCR 

At5g36920 -FW -SyBr ARACIN2 CTAAGTCTTCTGCTTTGCCTGATG qRT-PCR 

At5g33920 - RV - SyBr ARACIN2 CGTCTACATGGTGGTGGTCTC qRT-PCR 

PR-1_At2g14610-PL-FW   PATHOGENESIS-RELATED GENE 1 TGATCCTCGTGGGAATTATGT qRT-PCR 

PR-1_At2g14610-PL-RV   PATHOGENESIS-RELATED GENE 1 TGCATGATCACATCATTACTTCAT qRT-PCR 

PR-5_At1g75040-PL-FW   PATHOGENESIS-RELATED GENE 5 GACTGTGGCGGTCTAAGATGT qRT-PCR 

PR-5_At1g75040-PL-RV  PATHOGENESIS-RELATED GENE 5 TGAATTCAGCCAGAGTGACG  qRT-PCR 

Thi2-1_At1g72260-PL-FW  THIONIN 2.1 CTGGTCATGGCACAAGTTCA  qRT-PCR 

Thi2-1_At1g72260-PL-RV  THIONIN 2.1 GCCATTTCTAGCTTGGTTGG  qRT-PCR 

Thi2-2_At5g36910-PL-FW  THIONIN 2.2 TGACCACTCTCCAAAACTTTGAC  qRT-PCR 

Thi2-2_At5g36910-PL-RV   THIONIN 2.2 CTTTTAACTGCGGCGGTAGA qRT-PCR 

Pdf1-2_At5g44420-PL-FW  PLANT DEFENSIN 1.2 GTTCTCTTTGCTGCTTTCGAC  qRT-PCR 

Pdf1-2_At5g44420-PL-RV   PLANT DEFENSIN 1.2 GCAAACCCCTGACCATGT qRT-PCR 

 


