24 research outputs found

    Pulsations powered by hydrogen shell burning in white dwarfs

    Get PDF
    In the absence of a third dredge-up episode during the asymptotic giant branch phase, white dwarf models evolved from low-metallicity progenitors have a thick hydrogen envelope, which makes hydrogen shell burning be the most important energy source. We investigate the pulsational stability of white dwarf models with thick envelopes to see whether nonradial gg-mode pulsations are triggered by hydrogen burning, with the aim of placing constraints on hydrogen shell burning in cool white dwarfs and on a third dredge-up during the asymptotic giant branch evolution of their progenitor stars. We construct white-dwarf sequences from low-metallicity progenitors by means of full evolutionary calculations, and analyze their pulsation stability for the models in the range of effective temperatures Teff∼15 000 − 8 000T_{\rm eff} \sim 15\,000\,-\, 8\,000 K. We demonstrate that, for white dwarf models with masses M_{\star} \lesssim 0.71\,\rm M_{\sun} and effective temperatures 8 500≲Teff≲11 6008\,500 \lesssim T_{\rm eff} \lesssim 11\,600 K that evolved from low-metallicity progenitors (Z=0.0001Z= 0.0001, 0.00050.0005, and 0.0010.001) the dipole (ℓ=1\ell= 1) and quadrupole (ℓ=2\ell=2) g1g_1 modes are excited mostly due to the hydrogen-burning shell through the ε\varepsilon-mechanism, in addition to other gg modes driven by either the κ−γ\kappa-\gamma or the convective driving mechanism. However, the ε\varepsilon mechanism is insufficient to drive these modes in white dwarfs evolved from solar-metallicity progenitors. We suggest that efforts should be made to observe the dipole g1g_1 mode in white dwarfs associated with low-metallicity environments, such as globular clusters and/or the galactic halo, to place constraints on hydrogen shell burning in cool white dwarfs and the third dredge-up episode during the preceding asymptotic giant branch phase.Comment: 6 pages, 4 figures, 1 table. To be published in Astronomy and Astrophysic

    White dwarf evolutionary sequences for low-metallicity progenitors: The impact of third dredge-up

    Get PDF
    We present new white dwarf evolutionary sequences for low-metallicity progenitors. White dwarf sequences have been derived from full evolutionary calculations that take into account the entire history of progenitor stars, including the thermally-pulsing and the post-asymptotic giant branch phases. We show that for progenitor metallicities in the range 0.00003--0.001, and in the absence of carbon enrichment due to the occurrence of a third dredge-up episode, the resulting H envelope of the low-mass white dwarfs is thick enough to make stable H burning the most important energy source even at low luminosities. This has a significant impact on white dwarf cooling times. This result is independent of the adopted mass-loss rate during the thermally-pulsing and post-AGB phases, and the planetary nebulae stage. We conclude that in the absence of third dredge-up episodes, a significant part of the evolution of low-mass white dwarfs resulting from low-metallicity progenitors is dominated by stable H burning. Our study opens the possibility of using the observed white dwarf luminosity function of low-metallicity globular clusters to constrain the efficiency of third dredge up episodes during the thermally-pulsing AGB phase of low-metallicity progenitors.Comment: To be published in Astronomy and Astrophysics. 12 pages, 11 figure

    The Gaia DR2 halo white dwarf population: the luminosity function, mass distribution and its star formation history

    Full text link
    We analyze the volume-limited nearly complete 100 pc sample of 95 halo white dwarf candidates identified by the second data release of Gaia. Based on a detailed population synthesis model, we apply a method that relies on Gaia astrometry and photometry to accurately derive the individual white dwarf parameters (mass, radius, effective temperature, bolometric luminosity and age). This method is tested with 25 white dwarfs of our sample for which we took optical spectra and performed spectroscopic analysis. We build and analyse the halo white dwarf luminosity function, for which we find for the first time possible evidences of the cut-off at its faintest end, leading to an age estimate of ≃12±0.5\simeq12\pm0.5 Gyr. The mass distribution of the sample peaks at 0.589 M⊙0.589\,M_{\odot}, with 71%71\% of the white dwarf masses below 0.6 M⊙0.6\,M_{\odot} and just two massive white dwarfs of more than 0.8 M⊙0.8\,M_{\odot}. From the age distribution we find three white dwarfs with total ages above 12 Gyr, of which J1312-4728 is the oldest white dwarf known with an age of 12.41±0.2212.41\pm0.22 Gyr. We prove that the star formation history is mainly characterised by a burst of star formation that occurred from 10 to 12 Gyr in the past, but extended up to 8 Gyr. We also find that the peak of the star formation history is centered at around 11 Gyr, which is compatible with the current age of the Gaia-Enceladus encounter. Finally, 13%13\% of our halo sample is contaminated by high-speed young objects (total age<7 Gyr). The origin of these white dwarfs is unclear but their age distribution may be compatible with the encounter with the Sagittarius galaxy.Comment: 15 pages, 9 figures, 2 tables; accepted for publication in MNRA

    The effect of 22^{22}Ne diffusion in the evolution and pulsational properties of white dwarfs with solar metallicity progenitors

    Get PDF
    Because of the large neutron excess of 22^{22}Ne, this isotope rapidly sediments in the interior of the white dwarfs. This process releases an additional amount of energy, thus delaying the cooling times of the white dwarf. This influences the ages of different stellar populations derived using white dwarf cosmochronology. Furthermore, the overabundance of 22^{22}Ne in the inner regions of the star, modifies the Brunt-V\"ais\"al\"a frequency, thus altering the pulsational properties of these stars. In this work, we discuss the impact of 22^{22}Ne sedimentation in white dwarfs resulting from Solar metallicity progenitors (Z=0.02Z=0.02). We performed evolutionary calculations of white dwarfs of masses 0.5280.528, 0.5760.576, 0.6570.657 and 0.8330.833 M_{\sun}, derived from full evolutionary computations of their progenitor stars, starting at the Zero Age Main Sequence all the way through central hydrogen and helium burning, thermally-pulsing AGB and post-AGB phases. Our computations show that at low luminosities (\log(L/L_{\sun})\la -4.25), 22^{22}Ne sedimentation delays the cooling of white dwarfs with Solar metallicity progenitors by about 1~Gyr. Additionally, we studied the consequences of 22^{22}Ne sedimentation on the pulsational properties of ZZ~Ceti white dwarfs. We find that 22^{22}Ne sedimentation induces differences in the periods of these stars larger than the present observational uncertainties, particularly in more massive white dwarfs.Comment: Accepted for publication in ApJ. 8 pages, 6 figure

    White dwarf evolutionary sequences for low-metallicity progenitors: The impact of third dredge-up

    Get PDF
    Context. White dwarfs are nowadays routinely used as reliable cosmochronometers, allowing several stellar populations to be dated. Aims. We present new white dwarf evolutionary sequences for low-metallicity progenitors. This is motivated by the recent finding that residual H burning in low-mass white dwarfs resulting from Z = 0.0001 progenitors is the main energy source over a significant part of their evolution. Methods. White dwarf sequences have been derived from full evolutionary calculations that take the entire history of progenitor stars into account, including the thermally pulsing and the post-asymptotic giant branch (AGB) phases. Results. We show that for progenitor metallicities in the range 0.00003 ≲ Z ≲ 0.001, and in the absence of carbon enrichment from the occurrence of a third dredge-up episode, the resulting H envelope of the low-mass white dwarfs is thick enough to make stable H burning the most important energy source even at low luminosities. This has a significant impact on white dwarf cooling times. This result is independent of the adopted mass-loss rate during the thermally-pulsing and post-AGB phases and in the planetary nebulae stage. Conclusions. We conclude that in the absence of third dredge-up episodes, a significant part of the evolution of low-mass white dwarfs resulting from low-metallicity progenitors is dominated by stable H burning. Our study opens the possibility of using the observed white dwarf luminosity function of low-metallicity globular clusters to constrain the efficiency of third dredge up episodes during the thermally-pulsing AGB phase of low-metallicity progenitors.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    Carbon-oxygen ultra-massive white dwarfs in general relativity

    Get PDF
    We employ the La Plata stellar evolution code, LPCODE, to compute the first set of constant rest-mass carbon-oxygen ultra-massive white dwarf evolutionary sequences for masses higher than 1.29 Msun that fully take into account the effects of general relativity on their structural and evolutionary properties. In addition, we employ the LP-PUL pulsation code to compute adiabatic g-mode Newtonian pulsations on our fully relativistic equilibrium white dwarf models. We find that carbon-oxygen white dwarfs more massive than 1.382 Msun become gravitationally unstable with respect to general relativity effects, being this limit higher than the 1.369 Msun we found for oxygen-neon white dwarfs. As the stellar mass approaches the limiting mass value, the stellar radius becomes substantially smaller compared with the Newtonian models. Also, the thermo-mechanical and evolutionary properties of the most massive white dwarfs are strongly affected by general relativity effects. We also provide magnitudes for our cooling sequences in different passbands. Finally, we explore for the first time the pulsational properties of relativistic ultra-massive white dwarfs and find that the period spacings and oscillation kinetic energies are strongly affected in the case of most massive white dwarfs. We conclude that the general relativity effects should be taken into account for an accurate assessment of the structural, evolutionary, and pulsational properties of white dwarfs with masses above 1.30 Msun.Comment: 12 pages, 12 figures, accepted for publication in MNRAS. arXiv admin note: text overlap with arXiv:2208.1414

    General relativistic pulsations of ultra-massive ZZ Ceti stars

    Full text link
    Ultra-massive white dwarf stars are currently being discovered at a considerable rate, thanks to surveys such as the {\it Gaia} space mission. These dense and compact stellar remnants likely play a major role in type Ia supernova explosions. It is possible to probe the interiors of ultra-massive white dwarfs through asteroseismology. In the case of the most massive white dwarfs, General Relativity could affect their structure and pulsations substantially. In this work, we present results of relativistic pulsation calculations employing relativistic ultra-massive ONe-core white dwarf models with hydrogen-rich atmospheres and masses ranging from 1.291.29 to 1.369M⊙1.369 M_{\odot} with the aim of assessing the impact of General Relativity on the adiabatic gravity (gg)-mode period spectrum of very-high mass ZZ Ceti stars. Employing the relativistic Cowling approximation for the pulsation analysis, we find that the critical buoyancy (Brunt-V\"ais\"al\"a) and acoustic (Lamb) frequencies are larger for the relativistic case, compared to the Newtonian case, due to the relativistic white dwarf models having smaller radii and higher gravities for a fixed stellar mass. In addition, the gg-mode periods are shorter in the relativistic case than in the Newtonian computations, with relative differences of up to ∼50\sim 50 \% for the highest-mass models (1.369M⊙1.369 M_{\odot}) and for effective temperatures typical of the ZZ Ceti instability strip. Hence, the effects of General Relativity on the structure, evolution, and pulsations of white dwarfs with masses larger than ∼1.29M⊙\sim 1.29 M_{\odot} cannot be ignored in the asteroseismological analysis of ultra-massive ZZ Ceti stars.Comment: 15 pages, 21 figures, 2 tables. Accepted for publication in MNRA

    The unusual planetary nebula nucleus in the Galactic open cluster M37 and six further hot white dwarf candidates

    Full text link
    Planetary nebulae in Galactic open star clusters are rare objects; only three are known to date. They are of particular interest because their distance can be determined with high accuracy, allowing one to characterize the physical properties of the planetary nebula and its ionizing central star with high confidence. Here we present the first quantitative spectroscopic analysis of a central star in an open cluster, namely the faint nucleus of IPHASX J055226.2++323724 in M37. This cluster contains 14 confirmed white dwarf members, which were previously used to study the initial-to-final-mass relation of white dwarfs, and six additional white dwarf candidates. We performed an atmosphere modeling of spectra taken with the 10m Gran Telescopio Canarias. The central star is a hot hydrogen-deficient white dwarf with an effective temperature of 90,000 K and spectral type PG1159 (helium- and carbon-rich). We know it is about to transform into a helium-rich DO white dwarf because the relatively low atmospheric carbon abundance indicates ongoing gravitational settling of heavy elements. The star belongs to a group of hot white dwarfs that exhibit ultrahigh-excitation spectral lines possibly emerging from shock-heated material in a magnetosphere. We find a relatively high stellar mass of M=0.85−0.14+0.13M= 0.85^{+0.13}_{-0.14} M⊙_\odot. This young white dwarf is important for the semi-empirical initial-final mass relation because any uncertainty related to white-dwarf cooling theory is insignificant with respect to the pre-white-dwarf timescale. Its post-asymptotic-giant-branch age of 170,000−480,000170,000-480,000 yr suggests that the extended planetary nebula is extraordinarily old. We also performed a spectroscopic analysis of the six other white dwarf candidates of M37, confirming one as a cluster member.Comment: Accepted for publication in A&

    White dwarf evolutionary sequences for low-metallicity progenitors: The impact of third dredge-up

    Get PDF
    Context. White dwarfs are nowadays routinely used as reliable cosmochronometers, allowing several stellar populations to be dated. Aims. We present new white dwarf evolutionary sequences for low-metallicity progenitors. This is motivated by the recent finding that residual H burning in low-mass white dwarfs resulting from Z = 0.0001 progenitors is the main energy source over a significant part of their evolution. Methods. White dwarf sequences have been derived from full evolutionary calculations that take the entire history of progenitor stars into account, including the thermally pulsing and the post-asymptotic giant branch (AGB) phases. Results. We show that for progenitor metallicities in the range 0.00003 ≲ Z ≲ 0.001, and in the absence of carbon enrichment from the occurrence of a third dredge-up episode, the resulting H envelope of the low-mass white dwarfs is thick enough to make stable H burning the most important energy source even at low luminosities. This has a significant impact on white dwarf cooling times. This result is independent of the adopted mass-loss rate during the thermally-pulsing and post-AGB phases and in the planetary nebulae stage. Conclusions. We conclude that in the absence of third dredge-up episodes, a significant part of the evolution of low-mass white dwarfs resulting from low-metallicity progenitors is dominated by stable H burning. Our study opens the possibility of using the observed white dwarf luminosity function of low-metallicity globular clusters to constrain the efficiency of third dredge up episodes during the thermally-pulsing AGB phase of low-metallicity progenitors.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    The white dwarf population of NGC 6397

    Get PDF
    Context. NGC 6397 is one of the most interesting, well-observed, and most thoroughly theoretically studied globular clusters. The existing wealth of observations allows us to study the reliability of the theoretical white dwarf cooling sequences of low-metallicity progenitors, to determine the age of NGC 6397 and the percentage of unresolved binaries. We also assess other important characteristics of the cluster, such as the slope of the initial mass function or the fraction of white dwarfs with hydrogen-deficient atmospheres. Aims. We present a population synthesis study of the white dwarf population of NGC 6397. In particular, we study the shape of the color–magnitude diagram and the corresponding magnitude and color distributions. Methods. To do this, we used an advanced Monte Carlo code that incorporates the most recent and reliable cooling sequences and an accurate modeling of the observational biases. Results. Our theoretical models and the observed data agree well. In particular, we find that this agreement is best for those cooling sequences that take into account residual hydrogen burning. This result has important consequences for the evolution of progenitor stars during the thermally pulsing asymptotic giant branch phase, since it implies that appreciable third dredge-up in low-mass, low-metallicity progenitors is not expected to occur. Using a standard burst duration of 1.0 Gyr, we obtain that the age of the cluster is 12.8+0.50-0.75 Gyr. Greater ages are also compatible with the observed data, but then unrealistic longer durations of the initial burst of star formation are needed to fit the luminosity function. Conclusions. We conclude that a correct modeling of the white dwarf population of globular clusters, used in combination with the number counts of main-sequence stars, provides a unique tool for modeling the properties of globular clusters
    corecore