506 research outputs found

    On mapping functions for torsional analysis of splined shafts

    Get PDF
    Mapping functions for torsional analysis of splined shaft

    Weak commutation relations of unbounded operators and applications

    Full text link
    Four possible definitions of the commutation relation [S,T]=\Id of two closable unbounded operators S,TS,T are compared. The {\em weak} sense of this commutator is given in terms of the inner product of the Hilbert space \H where the operators act. Some consequences on the existence of eigenvectors of two number-like operators are derived and the partial O*-algebra generated by S,TS,T is studied. Some applications are also considered.Comment: In press in Journal of Mathematical Physic

    Complex adaptive responses during antagonistic coevolution between Tribolium castaneum and its natural parasite Nosema whitei revealed by multiple fitness components

    Get PDF
    Background: Host-parasite coevolution can lead to local adaptation of either parasite or host if there is specificity (GxG interactions) and asymmetric evolutionary potential between host and parasite. This has been demonstrated both experimentally and in field studies, but a substantial proportion of studies fail to detect such clear-cut patterns. One explanation for this is that adaptation can be masked by counter-adaptation by the antagonist. Additionally, genetic architecture underlying the interaction is often highly complex thus preventing specific adaptive responses. Here, we have employed a reciprocal cross-infection experiment to unravel the adaptive responses of two components of fitness affecting both parties with different complexities of the underlying genetic architecture (i.e. mortality and spore load). Furthermore, our experimental coevolution of hosts (Tribolium castaneum) and parasites (Nosema whitei) included paired replicates of naive hosts from identical genetic backgrounds to allow separation between host-and parasite-specific responses. Results: In hosts, coevolution led to higher resistance and altered resistance profiles compared to paired control lines. Host genotype x parasite genotype interactions (G(H) x G(P)) were observed for spore load (the trait of lower genetic complexity), but not for mortality. Overall parasite performance correlated with resistance of its matching host coevolution background reflecting a directional and unspecific response to strength of selection during coevolution. Despite high selective pressures exerted by the obligatory killing parasite, and host-and parasite-specific mortality profiles, no general pattern of local adaptation was observed, but one case of parasite maladaptation was consistently observed on both coevolved and control host populations. In addition, the use of replicate control host populations in the assay revealed one case of host maladaptation and one case of parasite adaptation that was masked by host counter-adaptation, suggesting the presence of complex and probably dynamically changing fitness landscapes. Conclusions: Our results demonstrate that the use of replicate naive populations can be a useful tool to differentiate between host and parasite adaptation in complex and dynamic fitness landscapes. The absence of clear local adaptation patterns during coevolution with a sexual host showing a complex genetic architecture for resistance suggests that directional selection for generality may be more important attributes of host-parasite coevolution than commonly assumed

    Antagonistic experimental coevolution with a parasite increases host recombination frequency

    Get PDF
    Background: One of the big remaining challenges in evolutionary biology is to understand the evolution and maintenance of meiotic recombination. As recombination breaks down successful genotypes, it should be selected for only under very limited conditions. Yet, recombination is very common and phylogenetically widespread. The Red Queen Hypothesis is one of the most prominent hypotheses for the adaptive value of recombination and sexual reproduction. The Red Queen Hypothesis predicts an advantage of recombination for hosts that are coevolving with their parasites. We tested predictions of the hypothesis with experimental coevolution using the red flour beetle, Tribolium castaneum, and its microsporidian parasite, Nosema whitei. Results: By measuring recombination directly in the individuals under selection, we found that recombination in the host population was increased after 11 generations of coevolution. Detailed insights into genotypic and phenotypic changes occurring during the coevolution experiment furthermore helped us to reconstruct the coevolutionary dynamics that were associated with this increase in recombination frequency. As coevolved lines maintained higher genetic diversity than control lines, and because there was no evidence for heterozygote advantage or for a plastic response of recombination to infection, the observed increase in recombination most likely represented an adaptive host response under Red Queen dynamics. Conclusions: This study provides direct, experimental evidence for an increase in recombination frequency under host-parasite coevolution in an obligatory outcrossing species. Combined with earlier results, the Red Queen process is the most likely explanation for this observation

    PRIMEIRAS NOTAS PARA UM OLHAR FENOMENOLÓGICO SOBRE O DESIGN: fenomenologia do projetar e teoria da ação

    Get PDF
    O trabalho procura introduzir uma epistemologia do design de cunho fenomenológico. Calcado especificamente nos textos e pensamentos de Edmund Husserl e sua fenomenologia, esclarecemos alguns conceitos usados no trabalho, especificamente de mundo de vividos, e de atitudes frente ao fenômeno. Com isso, conduzimos uma análise da ideia de projeto propondo uma ontologia fenomenológica ao projetar como uma atitude frente ao mundo, e que deriva diretamente da atitude natural, extrapolando suas características realistas. Introduz ainda a possibilidade de desmembramento da análise por via de uma teoria da ação, que auxiliaria entender parte das consequências de tal atitude projetual para a área do design.The work aims to introduce an epistemological phenomenological approach of design. Based specifically in the texts and thoughts of Edmund Husserl and his phenomenology, we clarify some concepts used in the work, specifically of world of livings, and attitudes toward the phenomenon. Thus, we conducted an analysis of the project idea by proposing a phenomenological ontology of designing as an attitude towards the world, which derives directly from the natural attitude, extrapolating its realistic basis. It also introduces the possibility of dismembering the analysis by means of a theory of action, which would help understand some of the consequences from this attitude towards the design area

    Significance analysis of microarray transcript levels in time series experiments

    Get PDF
    Background: Microarray time series studies are essential to understand the dynamics of molecular events. In order to limit the analysis to those genes that change expression over time, a first necessary step is to select differentially expressed transcripts. A variety of methods have been proposed to this purpose; however, these methods are seldom applicable in practice since they require a large number of replicates, often available only for a limited number of samples. In this data-poor context, we evaluate the performance of three selection methods, using synthetic data, over a range of experimental conditions. Application to real data is also discussed. Results: Three methods are considered, to assess differentially expressed genes in data-poor conditions. Method 1 uses a threshold on individual samples based on a model of the experimental error. Method 2 calculates the area of the region bounded by the time series expression profiles, and considers the gene differentially expressed if the area exceeds a threshold based on a model of the experimental error. These two methods are compared to Method 3, recently proposed in the literature, which exploits splines fit to compare time series profiles. Application of the three methods to synthetic data indicates that Method 2 outperforms the other two both in Precision and Recall when short time series are analyzed, while Method 3 outperforms the other two for long time series. Conclusion: These results help to address the choice of the algorithm to be used in data-poor time series expression study, depending on the length of the time series

    A quantization method based on threshold optimization for microarray short time series

    Get PDF
    BACKGROUND: Reconstructing regulatory networks from gene expression profiles is a challenging problem of functional genomics. In microarray studies the number of samples is often very limited compared to the number of genes, thus the use of discrete data may help reducing the probability of finding random associations between genes. RESULTS: A quantization method, based on a model of the experimental error and on a significance level able to compromise between false positive and false negative classifications, is presented, which can be used as a preliminary step in discrete reverse engineering methods. The method is tested on continuous synthetic data with two discrete reverse engineering methods: Reveal and Dynamic Bayesian Networks. CONCLUSION: The quantization method, evaluated in comparison with two standard methods, 5% threshold based on experimental error and rank sorting, improves the ability of Reveal and Dynamic Bayesian Networks to identify relations among genes

    On Azumaya's exact rings

    Get PDF

    Ventricular function after coronary artery bypass grafting: Evaluation by magnetic resonance imaging and myocardial strain analysis

    Get PDF
    AbstractObjectiveMagnetic resonance imaging with radiofrequency tissue tagging permits quantitative assessment of regional systolic myocardial strain. We sought to investigate the utility of this imaging modality to quantitatively determine preoperative impairment and postoperative improvement in ventricular function in patients with ischemic heart disease.MethodsMagnetic resonance imaging with radiofrequency tissue tagging was performed on 6 patients (average age 60.2 ± 13.7 years) with coronary artery disease and 32 control subjects with no known heart disease. Patients with coronary artery disease underwent imaging before and 3 months after coronary artery bypass grafting. The ventricle was divided into 6 segments within a midventricular plane. Regional 2-dimensional left ventricular circumferential strain was calculated from tagged magnetic resonance images throughout systole. Circumferential strain results were compared in patients before and after and 3 months after coronary artery bypass grafting and also in control subjects.ResultsBefore the operation circumferential strain identified 100% (10/10) of all regional wall motion abnormalities seen by preoperative ventriculography. Postoperatively, improvements were demonstrated in 56% (20/36) of the regions, and these improvements agreed with viability testing by single-photon emission computed tomography when available. Additionally, preoperative global circumferential strain for the ischemic group was significantly depressed relative to that in control subjects (0.11 ± 0.05 vs 0.20 ± 0.03, P < .001). Global circumferential strain correlated with ejection fraction by ventriculography (r = 0.84, P < .01) and improved after coronary artery bypass grafting (0.14 ± 0.05 vs 0.11 ± 0.05, P < .01).ConclusionsMagnetic resonance imaging with radiofrequency tissue tagging permitted circumferential strain calculation. This technology quantitatively demonstrated improvements in left ventricular wall motion after coronary artery bypass grafting for both individual regions and the entire ventricle. This noninvasive method may prove useful in preoperative evaluation and postoperative serial assessment of left ventricular wall motion
    corecore