General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

O anppirg functions for torsional analysis of splined shifts

 By Kwan Rim ${ }^{1}$ and Louis Camilla ${ }^{2}$
Abstract ${ }^{3}$

The purpose of this paper is to introduce a practical method of deriving relatively simple mapping functions; winch are needed in the torsional analysis of splined shafts. The form of the mapping functions being simple, it is shown that the analytical solutions are readily obtainable without undue labor, and that an appocorimate but systematic analysis of any splined shaft is now possible. The napping functions are also capable of analyzing splined shafts with very sharp re-entrant comers, which would not only defy the known methods of numerical analysis but also present some difficulties to experimental methods of analysis. Torsional analysis of a typical splined shaft is carried out; and the experimental errors associated with sharp re-entrant comers are illustroated through a carefully conducted experiment.

1. Associate Professor, Department of Mechanics and Hydraulics, University of Iowa, Iowa City, Iowa
2. Engineer, Materials Engineering Department, Deere \& Company, Moline Illinois
3. This paper includes research efforts supported by National Aeronautics and Space Administration, under NsG-576

GPO PRICE $\$$ \qquad
CSFTI PRICE (S) \$ \qquad
Hard copy $(\mathrm{HC}) \nsubseteq /, \mathcal{O})$
Microfiche (MF)

Notation

i	$\sqrt{-1}$
2,5	Complex numbers; i.e., $z=x+$ is
$\bar{z}, \overline{5}$	Conjrgate of complex numbers; i.e., $\bar{z}=x$ - iy
$\boldsymbol{f}(\mathrm{\zeta})$	Mapping function
n	Number of notches
j, k, 1, m	Indices
$\mathbf{K}_{\mathbf{j}}$	Exterior angle of the j-th viatex divided by
a_{j}, b_{j}, \ldots	Irages of vertices on the unit circle
$\mathbf{r}_{\mathbf{j}}$	Spacing of images on the unit circle
I	Resultant shear stress
$\boldsymbol{r}_{2 x}, \tau_{z y}$	Components of shear stress in the x - and y-directions, respectively
\dagger	Warping function
J	Torsional constant
T	Torque applied at the ends of the prismatic bar
K	Stuss concentration factor
$\nabla^{\mathbf{2}}$	Laplace's operator
H	Lateral displacement of membrase
9	Lateral pressuri on meabrane (psi)
F	Tension force in the uniforuly stretched membriine (lbs/in.)
v	Volume under the distended membrane
() ${ }^{\prime}$	$\frac{\partial}{\partial \zeta}()$

Introduction

It is well know that the function mapping a circle onto a simple region with n axes of symetry has the general form [1]*

$$
\begin{equation*}
z=f(\zeta)=\sum_{m=0}^{\infty} c_{m} \xi^{1+n m}, \quad c_{k}=\bar{C}_{m} \tag{1}
\end{equation*}
$$

However, an application of a mapping function expressed in an infinite series is prohibitive. The usual approach is to form an approximate polynomial mapping function which is obeained by truncating the infinite series after a certain term. The desirable characteristics of such an approximate mapping function are: reasonable congruency of the mappeit to the specified region and simpilicity of the mapping function. The significance of congruency is self-evident and does not require any further explanation. Simplicity also becomes very important, since a complicated mapping function te ; to dininish the merits of analy:ic soluticns. As the complexity of an analytic solution increases, so does the difficulty of comprehending its physical implicstions. It should be noted that the numerical answers provided by a complicated analytic solution may as well be obtained, with less computational effor'z: by using some reliable numerical rethod.

There exist several different methods of constructing apprcximate mapping functions; e.g., Melentiev's method [2]. Mos: of these methods, however, yield polynomials with a very ? urge number of tems (several dozen to a few hundrea) for a reasonably congruent mapping of a star-

[^0]shaped region. A careful revies of various mapping techniques showed that a proper application of the well-known method of the SchwarzChristoffel transformation (see [3] for an extensive list of references) offered several advantages, particularly in the case of splined shaft analyses.

The first advantage is simplicity of the method: the coefficients of the power series are automatically determined and remain fixed, and they are directly related to the physical parameters controlling the size and shape of the shaft cross section. The second advantage is that, compored to other methods, it usually yields polynomials with a smaller number of terms for the same eegree of mapping accuraz. It is also capable of mapping the cross section of a splined shaft with sharp reentrant corners. Appropriate polynomials are derived by examining the congruency and truncating the series according to a desired accuracy. Another point of great significance is that all the pulynomials obtained through truncation do automatically satisfy the condition of conformality.

Most of the other methods of approximate conformal transformation do not possess these properties. In many cases, the coefficients of a polynomial mapping function must be re-evaluated for every new approximation; and some methods require one tc start with an enormously large number of terms in order to ensure that the condition of conformality will be satisfied. Derivation of Mapping Functions

The general formula for the conformal mapping of the interior of a unit circle onto the interior of a closed polygrn [4] is given by

$$
\begin{equation*}
z=f(\zeta)=A \int_{0}^{\zeta}\left(\zeta_{1}-\zeta\right)^{-K_{1}\left(\zeta_{2}-\zeta\right)^{-K_{2}} \ldots\left(\zeta_{n}-\zeta\right)^{-K_{n}}{ }_{d \zeta}, ~} \tag{2}
\end{equation*}
$$

in which A is a complex constant and K_{j} is related to the exterior angle of the polygon at its vertex z_{j} by the factor of π. It may appear that an application of the Schwarz -ihristoffel transformation is likely to result into a sort of intractable complication in the case of a polygon with many sides. However, it turns out that the approximate mapping of the cross sections of usual splined shafts can be cransacted without much difficulty, since they may be closely approximated by relatively simple polygons with high degree of symmetry.

Cousider a shatt whose cross section may be well approximated by a simple star shown in Figure 1. The mapping function is given by

$$
\begin{equation*}
z=f(\zeta)=A \int_{0}^{\zeta}\left(1+\zeta^{n}\right)^{k}\left(1-\zeta^{n}\right)^{-k} d \zeta \tag{3}
\end{equation*}
$$

which results directly from the general equation (2). Although the integral cannot be svaluated in terins of elementary functions, one may
a) Expand the integrand into a power series
b) Integrate the series tem by term
c) Derive an approximate mapping function in the form of a polynomial which is obtained by truncating the series at an appropriate place.

In such a manner, the following polynomial is obtained from Eq. (3):

$$
\begin{equation*}
z=f(\zeta)=A\left[\zeta+c_{1} \zeta^{n+1}+\varepsilon_{2} \zeta^{2 n+1}+\ldots+c_{m} \zeta^{m n+1}\right] \tag{4}
\end{equation*}
$$

in which

$$
c_{1}=\frac{1}{n+1}\left(k_{1}+k_{2}\right),
$$

$$
\begin{gathered}
c_{2}=\frac{1}{2 n+1}\left[\frac{K_{2}\left(K_{2}-1\right)}{2!}+K_{1} K_{2}+\frac{K_{1}\left(K_{1}+1\right)}{2!}\right], \\
c_{3}=\frac{1}{3 n+1}\left[\frac{K_{2}\left(K_{2}-1\right)\left(K_{2}-2\right)}{3!}+\frac{K_{1} K_{2}\left(K_{1}+K_{2}\right)}{2!}+\frac{K_{1}\left(K_{1}+1\right)\left(K_{1}+2\right)}{3!}\right],
\end{gathered}
$$

This agrees with the general expreasion given by Eq. (1). Eq. (4) contains the well-known mapping function

$$
\begin{equation*}
z=f(\zeta)=A\left(\zeta+c_{1} \zeta^{j+1}\right) \tag{5}
\end{equation*}
$$

which was used by Stevenson [5] in this torsional analysis of a fluted column. The coefficient c_{1} of Eq. (5) controls the spline depth. However, it is bounded by the conformality condition in such a way that Eq. (5) is not capable of mapping a cross section with sufficient spline depth.

The fewer the number of terms retained in the polynomial, Eq. (4); the less accurate the mapping becemms. However, it is observed that a polynomial with a relatively small number of terms can often accomplish a reasonably accurate mapping. See Figure 2. In general, the effect of truncation is that of mapping a figure nearly congruent to the prescribed polygon but with rounded corners. Another interesting observation is that, if a polynomial is generated from a deep star (large K_{1}) and only a very faw terms (3 to 4) are retained, it maps a figure closely resembling some of the involute spline profiles. See figure 3.

It is alen possible to improve the accuracy of mapping by merely adjusting the numerical coefficients of a given polynomial; namely, without increasing the number of terms in the polynomial [6]. However,
the extent of such adjustment is limited by the condition of conformality. Since all the approximate mapping functions are being derived in the form of polynomials, the condition of conformality may be simply stated that all the roots of a polynomial, corresponding to the derivative of a mapping function, must lie on the exterior of a unit circle.

Derivation of mapping functions from Eq. (3) is simple, but their usefulness is linited to the analyses of serrated shafts and a certain kind of splined shaft shown in Figure : and Figure 3, respectively. In order to generate mapping functions for a very large class of splined shafts, the polygon shown in Figure 4 is considered. Proper substitution and regrouping of terms in Eq. (2) reduces the mapping function for such a polygon to
$z=A^{\prime} \int_{0}^{\zeta} \frac{\left[\left(d_{1}-\zeta\right) \ldots\left(d_{n}-\zeta\right)\right]^{K_{3}}\left[\left(c_{1}-\zeta\right) \ldots\left(c_{n}-\zeta\right)\right]^{K_{2}}\left[\left(e_{1}-\zeta\right) \ldots\left(e_{n}-\zeta\right)\right]^{K_{2}}}{K_{0}} d \zeta$,
in which $a_{j}, b_{j}, \ldots f_{j}$ are defined by
$a_{1}=e^{i \theta}, b_{1}=e^{i \gamma_{1}}, c_{1}=e^{i \gamma_{2}}, d_{1}=e^{i \frac{\pi}{n}}, e_{1}=e^{i\left(\frac{2 \pi}{n}-\gamma_{2}\right)}, f_{1}=e^{i\left(\frac{2 \pi}{n}-\gamma_{1}\right)}$
and by the general relationship
$\beta_{j}=B_{i} e^{i \frac{2 \pi}{n}(j-1)}, \beta_{j}=a_{j}, b_{j}, \ldots, f_{j} ;(j=1,2, \ldots n)$.
It can be shown thait
$\left(\beta_{1}-\zeta\right)\left(\beta_{2}-\zeta\right) \ldots\left(\beta_{n}-\zeta\right)=\prod_{j=1}^{n}\left[\beta_{1}^{i} e^{i \frac{2 \pi}{n}(j-1)}\right]=\beta_{1}^{n}-\zeta^{n}$.
Thus, observing that a_{n} and c. eorrespond to the 1 th rcots of +1 and -1 , respectively, Eq. (6) reduces to $z=A \int_{\zeta}^{\zeta} \frac{\left(1+\zeta^{n}\right)^{K_{3}}\left[\left(1-e^{-i n \gamma} \zeta^{n}\right)\left(1-e^{i n \gamma_{2}} \zeta^{n}\right)\right]^{K_{2}}}{\left(1-\zeta^{n}\right)^{K_{0}}\left[\left(1-e^{-i n \gamma_{1}{ }^{n}}\right)\left(1-e^{\left.i n^{\gamma}{ }_{1}{ }^{n}\right)}\right]^{K_{1}}\right.} d \zeta$.

Derivetion of approximate functions from Eq. (7) is the same as the oreceding case of a simple polygon, except for scmewnet increased complexity of expanding the integrand. A systematic expansiun of the integrand may be carried out by expanding each parenthesized quantity and then forming the product of all the series. For example, an expansion of the quantity

$$
\left[\left(1-e^{-i n \gamma_{j^{n}}}\right)\left(1-e^{i n \gamma_{j} n}\right) \sum_{j}^{K_{j}} \quad . \quad(j=1,2)\right.
$$

may be carried out in the following manner:
$\left(1-e^{-i n \gamma_{j} n}\right)^{K_{j}}=1+\sum_{k=1}^{\infty}\left[\prod_{m=0}^{k-1}\left(k_{j}-m\right)\right] \frac{e^{-i n \gamma_{j}^{k}}\left(-\zeta^{n}\right)^{k}}{k!}=\sum_{k=0}^{\infty} A_{k^{\prime}} \zeta^{n k}$,
$\left(1-e^{\left.i n \gamma_{j}{ }_{5}\right)^{K_{j}}=1+\sum_{k=1}^{\infty}\left[\prod_{m=0}^{k-1}\left(K_{j} \quad m\right)\right] \frac{e^{i n \gamma} j^{k}\left(-\zeta^{n}\right)^{k}}{k!}=\sum_{k=0}^{\infty} B_{k} \zeta^{n k} ; ~ ; ~ ; ~}\right.$
hence,
$\left[\left(1-e^{-i n \gamma_{j}}{ }_{\zeta}\right)\left(1-e^{i n \gamma_{j} n}\right)\right]_{j}=\sum_{k=0}^{q} c_{k}\left(\gamma_{j}, k_{j}\right) \zeta^{n k}$
where the coefficients $c_{k}\left(\gamma_{j}, K_{j}\right)$ are defined by

$$
C_{k}\left(\gamma_{j}, K_{j}\right)=\sum_{\ell=0}^{k} A_{\ell} B_{k-\ell},
$$

i.E.,

$$
c_{0}\left(\gamma_{j}, K_{j}\right)=1: \quad c_{i}\left(\gamma_{j}, K_{j}\right)=-K_{j} 2 \cos \left(i \gamma_{j}\right),
$$

$$
c_{2}\left(\gamma_{j}, K_{j}\right)=\frac{K_{j}\left(K_{j}-1\right)}{2!} 2 \cos \left(2 r \cdot Y_{i}\right)+K_{j} K_{j}
$$

$$
c_{3}\left(\gamma_{j}, k_{j}\right)=\frac{-k_{j}\left(k_{j}-1\right)\left(k_{j}-2\right)}{3!} 2 \cos \left(3 n r_{j}\right)-\frac{K_{j} k_{j}\left(k_{j} \cdot 1\right)}{1!} \frac{2 \cos \left(n \gamma_{j}\right), ~}{2!} 2 \operatorname{lon}
$$

$$
c_{4}\left(\gamma_{j}, k_{j}\right)=\frac{K_{j}\left(k_{j}-1\right)\left(K_{j}-2\right)\left(K_{j}-3\right)}{4!} 2 \cos \left(4 n \gamma_{j}\right)
$$

$$
+\frac{K_{j}}{1!} \frac{K_{j}\left(K_{j}-1\right)\left(K_{j}-2\right)}{3!} 2 \cos \left(2 n \gamma_{j}\right)+\left[\frac{K_{j}\left(K_{j}-1\right)}{2!}\right]^{2}
$$

Thus, Eq. (7) may now be expressad in terms of the products of the series defined by Eq. (8)

$$
\begin{align*}
z= & \int_{0}^{\zeta}\left[\sum_{k=0}^{\infty} c_{k}\left(\frac{\pi}{n}, \frac{K_{3}}{2}\right) r^{n k}\right]\left[\sum_{k=0}^{\infty} c_{k}\left(0, \frac{-K_{0}}{2}\right) \zeta^{n k}\right] \tag{9}\\
& \times\left[\sum_{k=0}^{\infty} c_{k}\left(Y_{2}, K_{2}\right) \zeta^{n k}\right]\left[\sum_{k=0}^{\infty} c_{k}\left(Y_{1},-K_{1}\right) \zeta^{n k}\right] d \zeta \zeta
\end{align*}
$$

which becomes

$$
\begin{equation*}
z=A \int_{0}^{\zeta}\left[\sum_{k=0}^{\infty} D_{k}\left(\gamma_{1}, \gamma_{2}, k_{1}, k_{2}, k_{3}\right) \zeta^{n k}\right] d \zeta \tag{10}
\end{equation*}
$$

In Eq. (10), the series $\sum_{k=0}^{\infty} D_{k} \zeta^{n k}$ is the final product of the series constituting the integrand of Eq. (9). Coefficients D_{k} are determined by a computer through an available subroutine for power series multiplication. Final form of the mapping function is given by

$$
\begin{equation*}
z=A \sum_{k=0}^{\infty} \frac{D_{k}}{1+n k} \zeta^{1+n k}, \tag{11}
\end{equation*}
$$

which again agrees with the general expressiol., Eq. (1).
An appricinate mapping function may be derived by truncating either the final series (11) or each of the four series in Eq. (9) at appropriate places. The latter procedure offers certain advantages, if one makes use of the following facts. Each of the four series is determiner uniquely by the properties of a particular verte: of the polygon; namely, each series corresponds to a particular vertex, and the mapping of the vicinity of a vertex is primarily controlled by the corresponding series. In other words, the more terms that $e^{\cdot v e}$ retained in the corresponding polynomial, the more accurats the mapping of a particular vertex region
becones, and vice versa. Furthermore, for the same accuracy of mappine, the polynomial comesponding to a vertex with a negative exterion angle requircs fewer temm than one with a positive exterior angle. The exterior angle of the polygon at a vertex is measured positive in the counter-clockwise direction.

The figure mapped by Eq. (11) is controlled by three types of parameters. They are the normalizing coefficient A, the factors relating to the ex.arior vertex angles $\left(K_{1}, K_{2}, K_{3}\right)$, and the spacing of the vertex images on the unit circle $\left(\gamma_{1}\right.$ and $\left.\dot{\gamma}_{2}\right)$. The normalizing coefficient A is Catermined in such a way that the distance from the center to the outer tip of a polygon is a unity and that one of the polygon's major axes of symmetry is oriented along the x-axis. It may be readily evaluated by letting $z=1$ be the image of $5=1$;i.e.,

$$
1=A \sum_{k=0}^{\infty} \frac{D_{k}}{I+n k} .
$$

Instead of normaizing, one may also determine A directly to match the mapped figure with the spline cress section. The exterior angles are of course known from a given polygon. The proper spacing of the verter images is determined from the relative side dimensions of the polygon, by following a procedure similar to that in [7]. Samples of mapping functions generated from the type of pilvyon shown in Figure 4 are plotted in Figures 5 and o. Reasonably accurate appings of typical involute spline cross sections are accomplished by polynomials with a smil number of terms.

Stress Analysis

Since the formel solicios of a prismatic bar subjected to a pure torsion is available in a number of excellent standard texts [8] [9], the final results will be used without derivation. The torsional constant and the components or shear stress are given as follows [9]:

$$
\begin{align*}
& J=\frac{1}{4 i} \oint_{S_{1}}[\bar{f}(\bar{\zeta})]^{2} f(\zeta) f^{\prime}(\zeta) d \zeta \\
&-\frac{1}{4} \oint_{S_{1}}^{\left[F_{i}(\zeta)+\bar{F}_{1}(\bar{\zeta})\right][f(\zeta) d \bar{f}(\vec{\zeta})+\bar{f}(\bar{\zeta}) \partial f(\zeta)],} \tag{12}\\
& \tau_{2 x}-i \tau_{z y}=\frac{T}{J}\left\{\frac{F^{\prime}(\zeta)}{f^{\prime}(\zeta)}-i \bar{f}(\bar{\zeta})\right], \tag{13}
\end{align*}
$$

in which $f(\zeta)$ is a mapping fumction and $F_{1}(\zeta)$ is an analytic function definec by

$$
\begin{equation*}
F_{1}=\sum_{\mathrm{m}=1}^{\mathrm{Q}}\left(\mathrm{i} \sum_{k=-\infty}^{\infty} \dot{S}_{\mathrm{m}+\mathrm{k}} \bar{A}_{k}\right) 5^{\mathrm{ma}} \tag{i4}
\end{equation*}
$$

where

$$
A_{m}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\zeta) e^{-i m \theta} \mathrm{a} \hat{\theta}, \quad \text { on }|\zeta|=1
$$

As an example. let us consider $=$ mapping function which is a simple tíree-teriin polycomial:

$$
z=f(\zeta)=A\left(\zeta+c_{2} \zeta^{n+1}+C_{2} \zeta^{2 n+1}\right) .
$$

Then, eqs. (14), (12), and (13) may be expressed in terms of the coefficients = the mapping function as foilows:

$$
\begin{align*}
& \bar{r}_{1}(\zeta)=i A^{2}\left[c_{1}\left(1+c_{2}\right) \zeta^{n}+c_{2} \zeta^{2 n}\right] \\
& \begin{aligned}
=\pi A^{4}\left[\frac{1}{2}\left(1-c_{2}^{4}\right)\right. & +2\left(c_{1}^{2}+c_{2}^{2}+c_{1}^{2} c_{i}\right) \\
& \left.+(n+1)\left(\frac{1}{2} c_{1}^{4}+c_{2}^{4}+2 c_{1}^{2} c_{2}^{2}\right)\right]
\end{aligned}
\end{align*}
$$

$$
\begin{gather*}
\tau_{z x}-i \tau_{z y}=\frac{i A T}{J}\left[\frac{n c_{1}\left(1+c_{2}\right) \zeta^{n-1}+2 n c_{2} 5^{2 n-1}}{1+(n+1) c_{1} \zeta^{n}+(2 n+1) c_{2} \zeta^{2 n}}-\bar{\zeta}-c_{1}(\bar{\zeta})\right. \\
+1 \tag{17}\\
-c_{2}\left(\bar{\zeta}^{2 n+1}\right]
\end{gather*}
$$

As a specific numerical example, let us investigate a 12 -notch splined shaft with majur and minor radii of 1.493 in . and $1.292 \mathrm{in} .$, respectively, by using one of the mapping function. presented in Figure 3. The mapping function

$$
\begin{equation*}
z=f(\zeta)=1.357\left(\zeta+0.07 \zeta^{13}+0.03 \zeta^{25}\right) \tag{18}
\end{equation*}
$$

is simple but transacts the conformal mappiag of a figure which is reasonable close to a splined shaft cross section. The radius of fillet is only 0.00277 in . mepresenting a sharp re-entrant comer. Substituting the coefficients of the meppiag function (18) into Eqs. (16) and (17), the torsional constant and the shear stress are obtained as follows:

$$
\begin{gathered}
J=5.453(\text { in. })^{4}, \\
\tau_{z x}-i \tau_{z y}=0.2488 i T\left[\frac{4.6525 \zeta^{11}+0.72 \zeta^{23}}{1+v .51 \zeta^{12}+0.75 \zeta^{24}}-\bar{\zeta}-0.07(\bar{\zeta})^{13}-0.03(\bar{\zeta})^{25}\right], \\
\tau=\sqrt{\tau_{z x}^{2}+\tau_{z y}^{2}}
\end{gathered}
$$

The flot of the shear stress distribution is presented in Figure 7. Av the point of th. maximum shear stress, $z=E\left(e^{i \frac{\pi}{18}}\right)$, we have

$$
r_{z x}-i_{T V}=0.2488 T(-3.316-i 2.858)
$$

and the maximun resultan ${ }^{+}$sheer stress is given by

$$
\tau_{\max }=0.2488 \mathrm{~T} \sqrt{(3.316)^{2}+} \sqrt{(2.958)^{2}}=1.09 \mathrm{~T} \mathrm{psi} .
$$

Since the maximun shear stress of a circular cyinder with the minimum
radius or the splined snaft is given by

$$
\tau_{\max .}^{\prime}=\frac{2 T}{\pi\left(R_{\min .}\right)^{3}}=\frac{2 T}{\pi(1.292)^{3}}=0.296 \mathrm{~T} \mathrm{psi} .
$$

the stress concentration factor is found to be

$$
K=\frac{1.09 \mathrm{~T}}{0.296 \mathrm{~T}}=3.68
$$

Experimental Analysis

Since the sharp geometric shanges in the cross section might introduce considerable errors to the results of any numerical analysis and even to the experimental results, the euthors have conducted a very careful experimental anaiysis using the membrane analogy technique. Hence, the purpose of tie experiment is to investigate the accuracy of the experimentall; evaluited stress concentration factors, esfecially in the case of a splined shaft with sharp re-entrant comers.

The membrane used in the experiment is a latex rubber sheen with the thickness of 0.907 in. and the elastic elongation of at leist 200 percent. peasurement of the elevation of the deflected membrane is greatly facilitated by applving an aqueous solution of potasiun dichronata on the mowrane. Any contact between tha micrometer probe and the conducting membrane surface is immediately detccted jy a sensitive galvanometer. The volume covered by the defiected merbrane and the slope of the membrane at any point are calculeted from tine readings of the membrane alevation. The formulas for the torsional constant and the shear stress [10] are given by

$$
\begin{align*}
& J=4 \frac{F}{Y} V, \tag{19}\\
& \tau=-\frac{T}{2 V} \frac{\partial W}{\partial N}, \tag{20}
\end{align*}
$$

in which the F / F ratio can be determined by measuring the elevation of the membrane at the center of the circular test hole [10]:

$$
\begin{equation*}
\frac{p}{F}=\frac{4}{r_{a}^{2}} z_{0} \tag{21}
\end{equation*}
$$

In Eq. (21.), r_{a} is the radius of the test hole and z_{0} is the elevation of the membrane at the center of the test hole.

The experimental results are presented in Table 1 along with the t.eoretical values.

	V (Volume)	J (ExF.)	J (Theo.)	Max. (Exp.)	Max. (Thev.)
Theoretical Splined Shaft	0.295	5.23	5.45	$0.93 T$	1.097

Table 1. Experimental Results

In spite of very carefuily repeated experimentations, it is observ d that the experimental value of the maximum shear stress has a somewhat large error cf -14.7 percent. Based on this investigation, it appears the experimentaliy evaluated stress concentration factors should be reviewed rather carefully.

Conclusions

The success of the complex variable method in elasticity hinges upon the availability and simpiicity of a mapping function. Although the existence of such a mapping function is guaranteed by the celebrated mapping theorem of Riemanr. [11], means for the actual construction or arbitrary mapping functions have not been devised. The authors have show that the approximate mapping of the cross sections of splined
shafts may be readily transacted through a proper application of the Schwarz-Christoffel transformation. It is due to the fact that the criss sections may be closely approximated by relatively simple polygons with high degrees of symetry.

Compared to other methods of approximate conformal transformations, the present inethed does provide a simple mapping function for the analysis of a splined shaft and it offers some unique advantages. Some of the advantages are: unique and automatic detemination of the coefficients of the mapping function, automatic satisfaction of the conformality condition, and the simple geometric interpretation of the paraneters which control the coefficients. The form of the mapping functions being simple, it is now possible to acconplish an aporoximate but systematic analysis of any splined shafts without undue labor.

The stress concentration factor of 3.68 , found for the particular splined shaft considered for the numerical example, is higher than the available analytical results of similar shafts [12][13]. This is due to the fact that the present analysis dealt with a shaft with a smaller fillet radius, which is more typical of the splined shafts used by industry.

Acknowledgment

The authors wish to thank Professor Miklos Hetenyi, Stanford University, for his kindness in reviewing the manuscript and making valuable suggestions, and Deere $\&$ Company for their support of the experimental work contained herein.

Fig. I Napping of a regular star-shaped polygon onto a unit circle.

Fig. 2 Region mapped by a Pour-term polynomial.

Fig. 3 Mapping of involute apline.

Unit Circle on 5 -plane
Polygon on z-plane

Fig. 4 Kapping of polygonai atar; $n=$ mumer of atar points, positive $\pi \mathrm{xi}_{\mathrm{j}}$ is counterclockwiae.

Fig. 5 Map of 5 Notch Spline Shaft

Fig. 6 Map of 8 Notch Spline Shatit

Fige 7 diatmibubom of ghour Sumose

References

1. Kantorovich, L. V., and Krylov, V. I., "Approximate Merhods of Higher Analysis," P. Noordhoff, Groningen, The Netherlands, 2958, p. 474.
2. Ibid., p. 451.
3. Higgins, T. J., "An epitomization of the basic theory of the generalized Schwarz-Christoffel transformation as used in applied pnysics," Journal of Applied Physics, 22, 3, 1951, pp. 365-366.
4. Nehari, Z., "Conformal Mapping," First Edition, McGraw-Hill Bowk Company, New York, 1952, p. 192.
5. Steveniton, A. C., "The torsion of a fluted column," Philor. Magazine, Ser. ' $\%$, 34, 1943, pp. 125-120.
6. Witirick, W. H., "Some simple transformation functions for square and triangular holes with rounded corners," Aero. Quart., 11, 1, 1960, pp. 159-199
7. Rim, K., and Stafford, R. O., "Lerivation of mapping functions for star-st yped regions," NASA CR-192, NASA, Washington, D. C., 1965 pp. ' $3-10$.
8. MuskhelishviLi, N. I., "Some Basic Proolems of the Methematical Theory Z Eiasticity," P. Noordhoff, Groningen, Holland, 1953, pp. $576 . .579$.
9. Wang, Chi-Teh, "Applied Elasticity," McGraw-Hill Book Co., New York, 1953, pp. 178-181
10. Hetènyi, Mikº́s, "Handbook of Experimental Stress Analysis," John Wiley and Sors, New York, 1950, pp. 700-751.
11. Bieberbach, L., "Conformè Mapping," Fourth Edition, Chelsea Publishing Co., New York, 1953, p. 128.
12. Okubo, H., "Torsion of a circular shaft with a number of longitudinal notches," Journal of Applied Mechanics, 17, Trans. ASME, 72, 1950, pp. 35y-362.
13. Nakazawa, H., "Tonsion of a shaft which has a number of longitudinal notches on outer and inner boundary," Proceedings, First Tapan National Congress for Applied Mechanics, 1951, pp. 209-214.

[^0]: * Numbers in brackets designate references at the end of paper.

