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Mbstract’ 353
The purpose of this paper is to introduce a practical method of

derivinz relatively simple mapping functions, w.ich are needed in the
torsional analysis of splined shafts. The form of the mapping functioms
being simple, it is shown tbat the analytical solutions are readily
cbtainsble without undue labor, and that an approximate but systematic
analysis of any splined shaft is now possible. The mapping functions

are also capable of analyzing splined shafts with very sharp re—entran:
coraess, wkich would not only defy the known methods of numerical analvsis
but also present some difficulties to experimental methods of analysis.
Torsional zaalysis of a typical splined shaft is carried out; and the
experizental errors associated with sharp re-entrant corners are illus-

. v
trated through a carefvlly conducted experiment. %(v"t
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Complex numbers; i.e., z = x ¢+ iy

Conjngate of complex numbers; i.e., z = x - iy
Mapping function

Number of notches

Indices

Exterior angle of the j-th vuitex divided by =
Ivages of vertices on the wmit circle

Spacing of images on the unit circle

Resultant shear stress

Components of shear stress in the =x- and
y-directions, respectively

Varping functicn

Torsional constant

Torque applied at the ends of the prismatic bar
St:2ss concentration factor

Laplace's operator

Lateral displacement of membrane

Lateral pressurc on membrane (psi)

Tensicn force in the uniformly stretched membraue
{1bs/in.)

Volume under the distended membrane
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Introduction
It is well known that the function mapping a circle onto a simple

regios with n axes of symmetry has the generali form ot

- - T 14nm - =
z = £(g) = nzoc','c . c? =C,- (1)

However, an spplication of a mapping function expressed in an infinite
series is prohibitive. The usual approach is to form an approximate
polynomial mapping function which is obeained by truncating the infinite
series after a certain term. The desirable characteristics of such an
approximate mapping function are: reasonable congruency of the mapped
to the specified region and simpliicity of the mapping function. The
significance of congruency is self-evident and does not require any
further explanztion. Simplicity also becomes very important, since a
complicated mapping function te s to diminish the merits of analyric
solutions. As the ccmplexity of an analytic solution increases, so does
the difficulty ;f comprehending its physical implications. It should
be noted that the numerical answers provided by a complicated analytic
solution may as well be obtained, with less computational effort. Dy
using some reliable numerical method.

Thers exist several different methods of constructing apprcximate
mapping functions; e.g., Melentiev's method [2]. MWMost of these methods,

however, yield polynomials with a very 2arge number of terms (several

dozen to a few hundred) for 3 reasonably congruent mapping of a star-

* Numbers in brackets designate references at the end of paper.
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shaped region. A careful revies of various mapping techniqucs showed
that a proper application of the well-knoﬁn method of the Schwarz-
Christoffel transformation (see {3] for an extensive list of rgferenceé)
offered several advantages, particularly in the case of splined shaft
analyses.

The first advantage is simplicity of the method: the coefficients
of the power series are automatically determined and remain fixe&, and
they are directly related to the physical parameters controlling the
size and shape of the shaft cross section. The second advantage is that,
compared to other methods, it usually yields polynomials with a smaller
number of terms for the same Zdegree of mapping accuracy. It is also
capable of mapping the cross section of a splined shaft with sharp re-
entrant corners. Appropriate polynomials are derived by examining the
congruency and truncating the series according to a desired accuracy.
Another point of great significance is that all the polynomials obtained
through truncation do automatically satisfy the condition cof conformality.

Most of the other methods of approximate conformal transformation
do not possess these properties. In many cases, the coefficients of a
polynomial mapping function nmust be re-evaluated for every new approxi-
mation; and some methods require one tc start with an enormously large
number of terms in order to ensure that the condition of conformality
" will be satisfied.

Derivation of Mapring Functions

The general formula for the conformal mapping of the interior of a

unit circle onto the interior of a closed polyzon Tu] is given by

-
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A [ (;l D) 1(c2 ) ...(;n t) Rhag, (2)
0
in which A is a complex constant and Kj is related to the exterior

z = £(g)

angle of the polygon at its vertex z:i by the factor of =. It may appear
that an application of the Schwarz-Christoffel transformation is likely to
result into a sort of intractable ccmplication in the case qf a polygon
with many sides. Howew)er, it turns out that the approximate mapping of
the cross sections of usual splined shafts can bc transacted without much
difficulty, since they may be closely approximated by relatively simple
polygons with high degree of symmetry.

Consider a shaft whose cross section may be well approximated by a

simple star shown in Figure 1. The mapping function is given by

4 -
k k1

z=f) =A] QA+ -5 lac, (3)

[
|
J

which results directly from the general equation (2). Although the

0

integral cannct be evaluated in terms of elementary functions, one may
a) Expand the integrand into a power series
b) Integrate the series term by term
¢) Derive an approximate mapping function in the form of a
polynomial which Is gbtained by truncating the series at an
appropriate place.

In such a manner, the following polynomial is obtained from Eq. (3):

z = £(g) = Alg + c1;°+1 . czc2“*l P cm;°“*1], (4)

in which

-1
¢ = aw1 (1K)
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This agrees with the general expression given by Eq. (1). Eq. (4) con-

tains the well-known mapping function

2= £ = Mg + €™, ' (s)

which was used by Stevenson {5] in this torsional analysis of a fluted
column. The coefficient ¢, of Eq. (5) controls the spline depth.
However, it is bounded by the conformality condition in such a way that
Eq. (5) is not capable of mapping a cross section with sufficient spline
depth.

The fewer the number of terms retained in the polynomial, Eq. (4);
the less accurate the mapping bczczes. However, it is observed that a
polynomial with a relatively small number of terms can often accomplish
a reasonably accurate mapping. See Figure 2. In general, the effect of
truncation is that of mapping a figure nearly congruent to the prescribed
polygon but with rounded corners. Another interesting observation is

that, if & polynomial is generated from a deep star (large K. ) and

1
only 2 very few terms (3 to U4) are retained, it maps a figure closely
resembling some of the involute splinz profiles. See Figure 3.

It is alen possible to improve the accuracy of mapping by merely

adjusting the numerical coefficients of a given polynomial; namely,

without increasing the number of terms in the polyncmial [6]. However,
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the extent of such adjustment is limited by the condition of Vco:zfomality.
Since all the approximate mapping functions are being derived in the fom
of p&lynonialé, the condition of conformality may be simply stated that
all the roots of a polynomial, corresponding fo the derivative of a
mapping function, must lie on the exterior of a unit circle.

Derivation of mapping functions from Eq. (3) is simple, but their
usefulness is limited to the analyses of serrated shafts and a certain
kind of splined shaft shown in Figure ® and Figure 3, respectively. 1In
order to generate mapping functions for a very large class of splined
shafts, the polygon shown in Figure 4 is considered. Proper substitution
and regrouping of terms in Eq. (2) reduces the mapping function for such
a polygon to

_ K3 K2 K2
A fs[(dl-c).no(dn' C)] [(cl- oclc(cnnc)] [(el“c)nut(en-;)]
z = A'

X K ag, . (6)

Ko 1
0[(31" 0.. .(an- D] [(bl- .. .(bn-c)] C(fl—;) e .(fn-c)l

in which aj, bj’ ces fj are defined by

2n s(21 .
. . . .7 i4E _ v, i(ZL - y))
- 10 . iv) RS 7] _ 1 - T 2 - n 1
a =e ,b =e » Gy = e ,dl-en,el-e ,fl e
and by the general relationship
255 - 1)
By = Bye ,8j=a.,bj,- » £.5 (3 =1, 2, ... n).

It can be shown that

2T, .
n {231
(h-¢m2-uux%-c>=rﬁﬁe“ J=s§-?,

Thus, observing that a,i and ¢ ~orrespond to the :-th rcots of +1

and -1, respectively, Eq. (6) reduces to

K -inY in¥ K
3 2
PasM - AR M)
z = A dg. (7)
K . s ¥ K
- in%

(- ™ % - MM - e
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Derivetion of approximate functions from Eq. (7) is the same &s

the oreceding cvase of a siwmple polygen, except for scmewnat ‘ncreased

complexity of expanding the integrand. A systematic expansion of the

integrand may be carried out by expanding each parenthesizéd quantity
and then forming the product of all the series. For example. an expansion

of the quantity

-inY. inY. X.
(- IMa-e M (3=1, 2

may be carried out in the following manner:
’ k-1 -inY_ k

-in¥, K, = 3T, Mk o
(1-e 30y J a1 Y ITT (K, - m) 2 kf‘g L ) Ak;nk,
x=1|m=0 ! : k=0
inY, K, o k-1 iank _,mk @
(L-e IMd=1+ T, m < (e . ) Bk;“k,
2 - J . =
k=1im=0 ! k=0
hence,
-invy. iny, K.
n n - ~ nk
(L-e IMaa-e IMII= k‘i S s K5)e (8)
=0
where the coefficients Ck(Yj’ Kj) are defined by
k
Y., K) = AB __,
%50 Ky zZO L k-2
i.e.,
2 = P 'Y., L] = "'K- lY- .
Co(Yj, K]) 1. ¢ 3 K]) ]2cos(ﬂ J)
K.(Kj - 1)
Cy(vys Ky) = ~—lor— 2e0a(2ny)) + KiKs,
-Kj(gj - 1)(Ki,_ 2) K, K,{(K. - 1)
= A - - - 2 o)’
C3(Yj, Kj) 30 2 cos(SnYJ) i1 T cos(nY]
K K, - IXK; - 2)(K, - 3)
=3 3 3 i o
C“(Yj, Kj) = 0 2com(un7i)

K. K. (K, KylKy - 1)12
R e I i 2ccs(2nvj) + [‘i“i§f"“')

e * e+ & & 8 a4 ® 4 e ® ¢ v s ¢ & & e + = & 4 s 3 s+ a2 * o+ T = .




Thgs, Eq. (7) may now be expresszd in terms of the products of the

series defined by Eq. (8)

‘fC E . KS E K
zzA (= - Bk c (o, ———)z; (9)
ko k0”72 k=0 ¥ : -

-

x} Yo (Y, Kt [ ¢ (Y , -K )t }d;,

which becomes

L {» .
z = l lzn(v,v, o Ky KOE fdg. (10)
o
In Eq. (10), the series z is the final product of the series
k-O

constituting the integrand of Eq. (9). Coefficients Dk are determined
by a computer through an available subroutine for power series multiplica-

tion. Final form of the mapping function is given by

D
2= A I—;-k—niz ;l+nk, (11)

which again agrees with the general exprgssion, Eq. (1).

An apprc<inate mapping function may be derived by truncating either
the final series (11) or each of the four series in Eq. (9) at appropriate
places. The latter procedure offers certain advantages, if one makes use
of the following facts. Each of the four series is determined uniquely
by the properties of a particular vertex of the polygon; namely, each
series corresponds to a particular vertex, and the mapping oi the vicinity
of a vertex is primarily controlled by the corresponding series. In
other words, the more terms that e retained in the corresponding

polynomial, the more accurat: the mapping of a particular vertex region
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becomes, and viee versa. Furthermore, for the same accurééy of maopingz,
the polynomial corresponding to a vertex with a negative exterior
angle requires fewer terms than one with a positive exterior aﬂgle.

The exterior angle of the polygon at a vertex is measured positive in
the counter-clockwise direstion.

The figure mapped by Eq. (11) is controlled by three types of
parameters. They are>the normalizing coefficient A, the factors
relating to the ex::rior vertex angles (Kl, K2, Ka), and the spacing
of the vertex images on the unit circle (Y 1 and fz). The normalizing
coefficient A is dztermined in such a way that the distance from the
center to the outer tip of a polygon is a unity ard that one of the
polygon's major axes of symmetry is oriented along the x-axis. It may

be readily evaluated by letting z = 1 be the image of 7 =13 i.e.,

o Dk
1 =4 z —
k=01 4+ nk

Instead of normalizing, one may also determine A directly to match the
mapped figure with the spline crcass section. The exterior angles are

of course known from a given polygon. The proper spacing of the vertex
images is determined from the relative side dimensions of the polygon,

by following a procedure similar to that in [7]. Samplecs of mapping
functions generated from the type of pclvizon shown in Figure 4 are plotted
in Figures 5 and 6. Reasonably sccurate mappings of typicul involute
spline cross sections are accomplished by polynomials with a sm= 'l number

of terms,
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Strcss Analysis

Since the formel solucion: of a prismatic bar subjected te a pure
torsion is available in a number of excellent standard texts [8] [3],
the final results wili be used without derivation. The torsional con-

stant and the components or shear stress are given as follows [9]:

J= -l;lff (E(DI2E()E (g
Sy
- %f [F,(0) + F(DIULOED + HDar(o)), (12)
: .sl T F;(C) - .
Tox ~ 1tzy =3 ?7-(-2)- - if(z)}, (13)

in which £(Z) :s a mapping fumction and Fl(t;) is an amalytic

functiorn defined by

q ]
- . e ke ] -
s LAY s A (i)
Rl k=-o
where

2 -3
A = ‘JT-[ £(z)e ™%, on |z = 1.
= 2n

9

As an ezample. let us comsider = mapping function which is a simple
three-term polyromial:

z = £{g) = Mz + C,;ml + 02(2”’1). 715)

Then, eqs. (14), (12), and (13) may be expressed in terms of the coeffi-

cients ° the mapping function as foilows:

=
L

-y = jAllr .~ ,2n
1“) iaflc @+ + 1,

2
- - pabrley L o® 2 2, n2
5= AL - )+ 2CT + CT ¢ '1C-¢-)

+(a+ 1(EC* + ch v 202eD)], (16)



[ =g
N

- n-1 .2n-1
) iA‘rlr‘Cl(l + Clg T+ 2nC,3 +1

T, - it = 5 - & - G0

J Ll + (n + J.)Cla;n + (20 + l)Czl;

_ 62(232n+4 . (17)

As a specific numerical example, let us investigate a 12-notch
splined shaft with majur and minor radii of 1.463 in. and 1.292 in.,
respectively, by using one of the mapping function. presentad in Figure
3. The mapping fuaction

2z = £(£) = 1.357( + 0.07¢%% 0.23¢%%) (18)

is simple but transacits the conformal mappiag of a figure which is
reascnable close to 2 splined shaft cross section. The radius of fillet
is only 0.80277 in. “ebresenting a sharp re-entrant cormer. Substi-
tuting tha coefficients of the mapping function (18) into Egs. (16)
ané (17), the torsional constant and the shear stress are obtained as follows:

J = 5.453 (in.)",

11 23
- o.2uasiT{%‘6525C * 9.72¢

14 0.91;12 + 0.75¢

2u

. -7 - 001D - 0.03(3325],
ZX

The plot of the shear stress distribution is gresented in Figure 7. Ax
T
FRL

the point of th~ maximum shear stress, z = F(e 18) | we have

T - ir_ = 0.2488T(-3.316 - i 2.858),
X 7v

and the maximum resultarn* shezr stress is given by

1= 0.2488T/(3.3162 + (2.958)% = 1.09 T psi.
max

Sincc the maximum sihear stress of 2 circular cylinder with the ninimum
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radius of the splined shaft is given by

S £ S = 0.296T psi.,

max
- 3 3
H(Rhin ) x(1.292)

the stress concentration factor is found to be

_1.09T
K‘ozgs'r

= 3.68.

Experimental Analysis

Since the sharp geometric changes in the cross section might intro-
duce considerable errcrs to the results of any numerical analysis and even
to the experimental results, the zuthors have conducted a very careful
experimental analysis usin: the membrane anslogy technique. Hence, the
purpose of e experiment is to invastigate the accuracy of the experi-
mentally evalvated stress concentration factors, especially in the case
of a splined shaft with sharp re-entrant cormers.

The membrane used in the experiment is a latax rubber shee. with
the thickness of 0.907 in. and the elastic elongaticn of at leust 200
percent. Heasurement of the =levation of the deflected membrane is greatly
facilitated by applving 2n agueous sclution of potasium dichromate on the
memorane. Any contact between the micrometer probe and the conducting
membrane surface is immediately detccted by a sensitive galvanometer.

The volume covered by the defiected merbrane and the slcpe of the membrane
at any point are calculated frow the readings of the membrane zlevation.

The formulas for the torsional constant and the shear stress [10]} are

given bv
J“_gv, (19)
T
LA (20)

N
<
ot
=z

v
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in which the F/F ratio <an be determined by measuring the elevation
of the membrane at the center of the circular test hole [10]:

?_
s

:% z, . (21)
r

a

In Eq. (21), r, 1is thLe radius of the test hole and z;, is the eleva-

tion of the membrane at the center of the test hole.

The >xperimental results are presented in Table 1 along with the

t-eoretical values.

v J J Max. Max.
(Volume) (Exp.) (Theo.) (Exp.) (Thes.)
Theoretical
Splined Shaft i 0.295 5.23 5.45 0.93T 1.09T
Table 1. Experimental Results

n spite of very carefully repeated experimentations, it is observ d
that The experimental valus of the maximum shear stress has a somewhat
large error cf -14.7 percent. 3ased on this investigation, it appears
the experimeatally evaluated stress concentration factors should be

reviewed rather carefully.

Conclusions

The success of the complex variable method in elasticity hinges
upon the availebility and simplicity of a mapping function. Although the
existence of such a mapping function s guaranteed by the celebrated
mapping theorem of Riemanr [11], weans for the actual construction of
arbitrary mapping functions have not been devised. The authors have

. shown that the approximate mapping of the cross secticns of splined
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shafts may be readily transacted through a proper application of the

Schwarz-Christoffel transfcrmation: It is due to the fact that the
eriss sections may be closely approximated by relatively simple polygens
with high degrees of symmetry.

Compared to other methods of approximate conformal transformations,
the present inethced does provide a simple mapping function for the analy-
sis of a splined shaft and it offers some unique advantages. Some of the
advantages are: unique and automatic determination of the coefficients
of the mapping function, automatic satisfaction of the conformality
condition, and the simple geometric interpretation of the parameters
which control the coefficients. The form of the mapping functions being
simple, it is now possible to accomplish an aporoximate but systematic
analysis of any splined shafts without undue labor.

The stress concentration factor of 3.68, found for the particular
splined shaft considered for the numerical example, is higher than the
available analitical results of similar shafts [12][13]. This is due
to the fact that the present analysis dealt with a shaft with a smaller
fillet radius, which is more typical of the splined shafts used

by industry.
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Fig. 1  Mapping of a regular star-shaped polygon onto a unit circle.
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Unit Circle on {°-plane Polygon on gz-plane
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Fig. b  Mapping of a polygonal star; n = mumber of ster points,

positive (K, is counterclockwise.
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