8 research outputs found

    Structure and Mode-of-Action of the Two-Peptide (Class-IIb) Bacteriocins

    Get PDF
    This review focuses on the structure and mode-of-action of the two-peptide (class-IIb) bacteriocins that consist of two different peptides whose genes are next to each other in the same operon. Optimal antibacterial activity requires the presence of both peptides in about equal amounts. The two peptides are synthesized as preforms that contain a 15–30 residue double-glycine-type N-terminal leader sequence that is cleaved off at the C-terminal side of two glycine residues by a dedicated ABC-transporter that concomitantly transfers the bacteriocin peptides across cell membranes. Two-peptide bacteriocins render the membrane of sensitive bacteria permeable to a selected group of ions, indicating that the bacteriocins form or induce the formation of pores that display specificity with respect to the transport of molecules. Based on structure–function studies, it has been proposed that the two peptides of two-peptide bacteriocins form a membrane-penetrating helix–helix structure involving helix–helix-interacting GxxxG-motifs that are present in all characterized two-peptide bacteriocins. It has also been suggested that the membrane-penetrating helix–helix structure interacts with an integrated membrane protein, thereby triggering a conformational alteration in the protein, which in turn causes membrane-leakage. This proposed mode-of-action is similar to the mode-of-action of the pediocin-like (class-IIa) bacteriocins and lactococcin A (a class-IId bacteriocin), which bind to a membrane-embedded part of the mannose phosphotransferase permease in a manner that causes membrane-leakage and cell death

    Analysis of the Two-Peptide Bacteriocins Lactococcin G and Enterocin 1071 by Site-Directed Mutagenesis▿

    No full text
    The two peptides (Lcn-α and Lcn-β) of the two-peptide bacteriocin lactococcin G (Lcn) were changed by stepwise site-directed mutagenesis into the corresponding peptides (Ent-α and Ent-β) of the two-peptide bacteriocin enterocin 1071 (Ent), and the potencies and specificities of the various hybrid constructs were determined. Both Lcn and, to a lesser extent, Ent were active against all the tested lactococcal strains, but only Ent was active against the tested enterococcal strains. The two bacteriocins thus differed in their relative potencies to various target cells, despite their sequence similarities. The hybrid combination Lcn-α+Ent-β had low potency against all strains tested, indicating that these two peptides do not interact optimally. The reciprocal hybrid combination (i.e., Ent-α+Lcn-β), in contrast, was highly potent, indicating that these two peptides may form a functional antimicrobial unit. In fact, this hybrid combination (Ent-α+Lcn-β) was more potent against lactococcal strains than wild-type Ent was (i.e., Ent-α+Ent-β), but it was inactive against enterococcal strains (in contrast to Ent but similar to Lcn). The observation that Ent-α is more active against lactococci in combination with Lcn-β and more active against enterococci in combination with Ent-β suggests that the β peptide is an important determinant of target cell specificity. Especially the N-terminal residues of the β peptide seem to be important for specificity, since Ent-α combined with an Ent-β variant with Ent-to-Lcn mutations at positions 1 to 4, 7, 9, and 10 was >150-fold less active against enterococcal strains but one to four times more active against lactococcal strains than Ent-α+Ent-β. Moreover, Ent-to-Lcn single-residue mutations in the region spanning residues 1 to 7 in Ent-β had a more detrimental effect on the activity against enterococci than on that against lactococcal strains. Of the single-residue mutations made in the N-terminal region of the α peptide, the Ent-to-Lcn mutations N8Q and P12R in Ent-α influenced specificity, as follows: the N8Q mutation had no effect on activity against tested enterococcal strains but increased the activity 2- to 4-fold against the tested lactococcal strains, and the P12R mutation reduced the activity >150-fold and only ∼2-fold against enterococcal and lactococcal strains, respectively. Changing residues in the C-terminal half/part of the Lcn peptides (residues 20 to 39 and 25 to 35 in Lcn-α and Lcn-β, respectively) to those found in the corresponding Ent peptides did not have a marked effect on the activity, but there was an ∼10-fold or greater reduction in the activity upon also introducing Lcn-to-Ent mutations in the mid-region (residues 8 to 19 and 9 to 24 in Lcn-α and Lcn-β, respectively). Interestingly, the Lcn-to-Ent F19L+G20A mutation in an Lcn-Ent-β hybrid peptide was more detrimental when the altered peptide was combined with Lcn-α (>10-fold reduction) than when it was combined with Ent-α (∼2-fold reduction), suggesting that residues 19 and 20 (which are part of a GXXXG motif) in the β peptide may be involved in a specific interaction with the cognate α peptide. It is also noteworthy that the K2P and A7P mutations in Lcn-β reduced the activity only ∼2-fold, suggesting that the first seven residues in the β peptides do not form an α-helix

    The Lactococcin G Immunity Protein Recognizes Specific Regions in Both Peptides Constituting the Two-Peptide Bacteriocin Lactococcin G▿

    No full text
    Lactococcin G and enterocin 1071 are two homologous two-peptide bacteriocins. Expression vectors containing the gene encoding the putative lactococcin G immunity protein (lagC) or the gene encoding the enterocin 1071 immunity protein (entI) were constructed and introduced into strains sensitive to one or both of the bacteriocins. Strains that were sensitive to lactococcin G became immune to lactococcin G when expressing the putative lactococcin G immunity protein, indicating that the lagC gene in fact encodes a protein involved in lactococcin G immunity. To determine which peptide or parts of the peptide(s) of each bacteriocin that are recognized by the cognate immunity protein, combinations of wild-type peptides and hybrid peptides from the two bacteriocins were assayed against strains expressing either of the two immunity proteins. The lactococcin G immunity protein rendered the enterococcus strain but not the lactococcus strains resistant to enterocin 1071, indicating that the functionality of the immunity protein depends on a cellular component. Moreover, regions important for recognition by the immunity protein were identified in both peptides (Lcn-α and Lcn-β) constituting lactococcin G. These regions include the N-terminal end of Lcn-α (residues 1 to 13) and the C-terminal part of Lcn-β (residues 14 to 24). According to a previously proposed structural model of lactococcin G, these regions will be positioned adjacent to each other in the transmembrane helix-helix structure, and the model thus accommodates the present results

    A putative amino acid transporter determines sensitivity to the two-peptide bacteriocin plantaricin JK

    Get PDF
    Lactobacillus plantarum produces a number of antimicrobial peptides (bacteriocins) that mostly target closely related bacteria. Although bacteriocins are important for the ecology of these bacteria, very little is known about how the peptides target sensitive cells. In this work, a putative membrane protein receptor of the two-peptide bacteriocin plantaricin JK was identified by comparing Illumina sequence reads from plantaricin JK-resistant mutants to a crude assembly of the sensitive wild-type Weissella viridescens genome using the polymorphism discovery tool VAAL. Ten resistant mutants harbored altogether seven independent mutations in a gene encoding an APC superfamily protein with 12 transmembrane helices. The APC superfamily transporter thus is likely to serve as a target for plantaricin JK on sensitive cells

    Nuclear Magnetic Resonance Structure and Mutational Analysis of the Lactococcin A Immunity Protein

    Get PDF
    The class IId bacteriocin lactococcin A and the pediocin-like bacteriocins induce membrane leakage and cell death by specifically binding the mannose phophotransferase system (man-PTS) on their target cells. The bacteriocins’ cognate immunity proteins that protect the producer cell from its own bacteriocin recognize and bind to the bacteriocin–man-PTS complex and thereby block membrane leakage. In this study, we have determined the three-dimensional structure of the lactococcin A immunity protein (LciA) by the use of nuclear magnetic resonance spectroscopy. LciA forms a four-helix bundle structure with a flexible C-terminal tail. Despite the low degree of sequence similarity between LciA and the pediocin-like immunity proteins, they share the same fold. However, there are certain differences between the structures. The C-terminal helix in LciA is considerably shorter than that observed in the pediocin-like immunity proteins, and the surface potentials of the immunity proteins differ. Truncated variants of LciA in which 6 or 10 of the C-terminal residues were removed yielded a reduced degree of protection, indicating that the unstructured C-terminal tail is important for the functionality of the immunity proteins

    Sensitivity to the two-peptide bacteriocin lactococcin G is dependent on UppP, an enzyme involved in cell-wall synthesis

    Get PDF
    Most bacterially produced antimicrobial peptides (bacteriocins) are thought to kill target cells by a receptor-mediated mechanism. However, for most bacteriocins the receptor is unknown. For instance, no target receptor has been identified for the two-peptide bacteriocins (class IIb), whose activity requires the combined action of two individual peptides. To identify the receptor for the class IIb bacteriocin lactococcin G, which targets strains of Lactococcus lactis, we generated 12 lactococcin G-resistant mutants and performed whole-genome sequencing to identify mutations causing the resistant phenotype. Remarkably, all had a mutation in or near the gene uppP (bacA), encoding an undecaprenyl pyrophosphate phosphatase; a membrane protein involved in peptidoglycan synthesis. Nine mutants had stop codons or frameshifts in the uppP gene, two had point mutations in putative regulatory regions and one caused an amino acid substitution in UppP. To verify the receptor function of UppP, it was shown that growth of non-sensitive Streptococcus pneumoniae could be inhibited by lactococcin G when L. lactis uppP was expressed in this bacterium. Furthermore, we show that the related class IIb bacteriocin enterocin 1071 also uses UppP as receptor. The approach used here should be broadly applicable to identify receptors for other bacteriocins as well
    corecore