3,162 research outputs found

    The diagonal graph

    Get PDF
    According to the O'Nan--Scott Theorem, a finite primitive permutation group either preserves a structure of one of three types (affine space, Cartesian lattice, or diagonal semilattice), or is almost simple. However, diagonal groups are a much larger class than those occurring in this theorem. For any positive integer m and group G (finite or infinite), there is a diagonal semilattice, a sub-semilattice of the lattice of partitions of a set Ω, whose automorphism group is the corresponding diagonal group. Moreover, there is a graph (the diagonal graph), bearing much the same relation to the diagonal semilattice and group as the Hamming graph does to the Cartesian lattice and the wreath product of symmetric groups. Our purpose here, after a brief introduction to this semilattice and graph, is to establish some properties of this graph. The diagonal graph ΓD(G,m) is a Cayley graph for the group Gm, and so is vertex-transitive. We establish its clique number in general and its chromatic number in most cases, with a conjecture about the chromatic number in the remaining cases. We compute the spectrum of the adjacency matrix of the graph, using a calculation of the Möbius function of the diagonal semilattice. We also compute some other graph parameters and symmetry properties of the graph. We believe that this family of graphs will play a significant role in algebraic graph theory.PostprintPeer reviewe

    Competing in low-income markets using dynamic and adaptive market sensing capabilities

    Get PDF
    Firms targeting high-income consumers are finding their markets becoming increasingly saturated and this has caused a shift in focus to the extensive base of low-income consumers. The opportunity and wealth that is present in the low-income segment has been iterated in numerous instances, yet the challenges to compete in this market are plentiful. To better understand the low-income market and their needs, firms need to develop strong market sensing capabilities that allow them to interpret and develop insights into this market. This report seeks to better understand the adaptive and dynamic nature of these market sensing capabilities and how firms are using these to compete in low-income markets. A qualitative design was followed where 12 senior managers from 11 firms competing in the South African low-income market were interviewed. This was facilitated by a semi-structured in-depth interview method. An inductive and deductive analysis approach was used to interpret the findings against existing models, as well as to discover new themes emerging from the data. The findings included three key themes: the use of mixed method market sensing practices to adapt to the market; improving the capability through continuous sensing, responding and learning; and influencing success by creating an adaptive internal environment. Based on these findings, a framework for competing in low-income markets using market sensing capabilities was constructed.Dissertation (MBA)--University of Pretoria, 2013.mngibs2014Gordon Institute of Business Science (GIBS)MBAUnrestricte

    Diagonal groups and arcs over groups

    Get PDF
    Partially supported by Simons Foundation Collaboration Grant 359872 and by Fundacaopara a Ciencia e a Tecnologia (Portuguese Foundation for Science and Technology) grant PTDC/MAT-PUR/31174/2017. Australian Research Council Discovery Grant DP160102323.In an earlier paper by three of the present authors and Csaba Schneider, it was shown that, for m≥2, a set of m+1 partitions of a set Ω, any m of which are the minimal non-trivial elements of a Cartesian lattice, either form a Latin square (if m=2), or generate a join-semilattice of dimension m associated with a diagonal group over a base group G. In this paper we investigate what happens if we have m+r partitions with r≥2, any m of which are minimal elements of a Cartesian lattice. If m=2, this is just a set of mutually orthogonal Latin squares. We consider the case where all these squares are isotopic to Cayley tables of groups, and give an example to show the groups need not be all isomorphic. For m>2, things are more restricted. Any m+1 of the partitions generate a join-semilattice admitting a diagonal group over a group G. It may be that the groups are all isomorphic, though we cannot prove this. Under an extra hypothesis, we show that G must be abelian and must have three fixed-point-free automorphisms whose product is the identity. (We describe explicitly all abelian groups having such automorphisms.) Under this hypothesis, the structure gives an orthogonal array, and conversely in some cases. If the group is cyclic of prime order p, then the structure corresponds exactly to an arc of cardinality m+r in the (m−1)-dimensional projective space over the field with p elements, so all known results about arcs are applicable. More generally, arcs over a finite field of order q give examples where G is the elementary abelian group of order q. These examples can be lifted to non-elementary abelian groups using p-adic techniques.Publisher PDFPeer reviewe

    The geometry of diagonal groups

    Get PDF
    Part of the work was done while the authors were visiting the South China University of Science and Technology (SUSTech), Shenzhen, in 2018, and we are grateful (in particular to Professor Cai Heng Li) for the hospitality that we received.The authors would like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the programme Groups, representations and applications: new perspectives (supported by EPSRC grant no.EP/R014604/1), where further work on this paper was undertaken. In particular we acknowledge a Simons Fellowship (Cameron) and a Kirk Distinguished Visiting Fellowship (Praeger) during this programme. Schneider thanks the Centre for the Mathematics of Symmetry and Computation of The University of Western Australia and Australian Research Council Discovery Grant DP160102323 for hosting his visit in 2017 and acknowledges the support of the CNPq projects Produtividade em Pesquisa (project no.: 308212/2019-3) and Universal (project no.:421624/2018-3).Diagonal groups are one of the classes of finite primitive permutation groups occurring in the conclusion of the O'Nan-Scott theorem. Several of the other classes have been described as the automorphism groups of geometric or combinatorial structures such as affine spaces or Cartesian decompositions, but such structures for diagonal groups have not been studied in general. The main purpose of this paper is to describe and characterise such structures, which we call diagonal semilattices. Unlike the diagonal groups in the O'Nan-Scott theorem, which are defined over finite characteristically simple groups, our construction works over arbitrary groups, finite or infinite. A diagonal semilattice depends on a dimension m and a group T. For m=2, it is a Latin square, the Cayley table of T, though in fact any Latin square satisfies our combinatorial axioms. However, for m≥3, the group T emerges naturally and uniquely from the axioms. (The situation somewhat resembles projective geometry, where projective planes exist in great profusion but higher-dimensional structures are coordinatised by an algebraic object, a division ring.) A diagonal semilattice is contained in the partition lattice on a set Ω, and we provide an introduction to the calculus of partitions. Many of the concepts and constructions come from experimental design in statistics. We also determine when a diagonal group can be primitive, or quasiprimitive (these conditions turn out to be equivalent for diagonal groups). Associated with the diagonal semilattice is a graph, the diagonal graph, which has the same automorphism group as the diagonal semilattice except in four small cases with m<=3. The class of diagonal graphs includes some well-known families, Latin-square graphs and folded cubes, and is potentially of interest. We obtain partial results on the chromatic number of a diagonal graph, and mention an application to the synchronization property of permutation groups.PostprintPeer reviewe

    Groups generated by derangements

    Get PDF
    Funding: the research of the last two authors is supported by the Australian Research Council Discovery Project DP200101951. This work was supported by EPSRC grant no EP/R014604/1. In addition, the second author was supported by a Simons Fellowship.We examine the subgroup D(G) of a transitive permutation group G which is generated by the derangements in G. Our main results bound the index of this subgroup: we conjecture that, if G has degree n and is not a Frobenius group, then |G:D(G)|≤ √n-1; we prove this except when G is a primitive affine group. For affine groups, we translate our conjecture into an equivalent form regarding |H:R(H)|, where H is a linear group on a finite vector space and R(H) is the subgroup of H generated by elements having eigenvalue 1. If G is a Frobenius group, then D(G) is the Frobenius kernel, and so G/D(G) is isomorphic to a Frobenius complement. We give some examples where D(G) ≠ G, and examine the group-theoretic structure of G/D(G); in particular, we construct groups G in which G/D(G) is not a Frobenius complement.PostprintPeer reviewe

    Uniformity in association schemes and coherent configurations: cometric Q-antipodal schemes and linked systems

    Get PDF
    Inspired by some intriguing examples, we study uniform association schemes and uniform coherent configurations, including cometric Q-antipodal association schemes. After a review of imprimitivity, we show that an imprimitive association scheme is uniform if and only if it is dismantlable, and we cast these schemes in the broader context of certain --- uniform --- coherent configurations. We also give a third characterization of uniform schemes in terms of the Krein parameters, and derive information on the primitive idempotents of such a scheme. In the second half of the paper, we apply these results to cometric association schemes. We show that each such scheme is uniform if and only if it is Q-antipodal, and derive results on the parameters of the subschemes and dismantled schemes of cometric Q-antipodal schemes. We revisit the correspondence between uniform indecomposable three-class schemes and linked systems of symmetric designs, and show that these are cometric Q-antipodal. We obtain a characterization of cometric Q-antipodal four-class schemes in terms of only a few parameters, and show that any strongly regular graph with a ("non-exceptional") strongly regular decomposition gives rise to such a scheme. Hemisystems in generalized quadrangles provide interesting examples of such decompositions. We finish with a short discussion of five-class schemes as well as a list of all feasible parameter sets for cometric Q-antipodal four-class schemes with at most six fibres and fibre size at most 2000, and describe the known examples. Most of these examples are related to groups, codes, and geometries.Comment: 42 pages, 1 figure, 1 table. Published version, minor revisions, April 201

    Appendage to: Multi-part balanced incomplete-block designs

    Get PDF
    Publisher PDFNon peer reviewe

    Multi-part balanced incomplete-block designs

    Get PDF
    We consider designs for cancer trials which allow each medical centre to treat only a limited number of cancer types with only a limited number of drugs. We specify desirable properties of these designs, and prove some consequences. Then we give several different constructions. Finally we generalize this to three or more factors, such as biomarkers.Publisher PDFPeer reviewe
    • …
    corecore