23,468 research outputs found
Feedback computability on Cantor space
We introduce the notion of feedback computable functions from to
, extending feedback Turing computation in analogy with the standard
notion of computability for functions from to . We then
show that the feedback computable functions are precisely the effectively Borel
functions. With this as motivation we define the notion of a feedback
computable function on a structure, independent of any coding of the structure
as a real. We show that this notion is absolute, and as an example characterize
those functions that are computable from a Gandy ordinal with some finite
subset distinguished
Using gamma regression for photometric redshifts of survey galaxies
Machine learning techniques offer a plethora of opportunities in tackling big
data within the astronomical community. We present the set of Generalized
Linear Models as a fast alternative for determining photometric redshifts of
galaxies, a set of tools not commonly applied within astronomy, despite being
widely used in other professions. With this technique, we achieve catastrophic
outlier rates of the order of ~1%, that can be achieved in a matter of seconds
on large datasets of size ~1,000,000. To make these techniques easily
accessible to the astronomical community, we developed a set of libraries and
tools that are publicly available.Comment: Refereed Proceeding of "The Universe of Digital Sky Surveys"
conference held at the INAF - Observatory of Capodimonte, Naples, on
25th-28th November 2014, to be published in the Astrophysics and Space
Science Proceedings, edited by Longo, Napolitano, Marconi, Paolillo, Iodice,
6 pages, and 1 figur
Estimating the masses of extra-solar planets
All extra-solar planet masses that have been derived spectroscopically are
lower limits since the inclination of the orbit to our line-of-sight is unknown
except for transiting systems. It is, however, possible to determine the
inclination angle, i, between the rotation axis of a star and an observer's
line-of-sight from measurements of the projected equatorial velocity (v sin i),
the stellar rotation period (P_rot) and the stellar radius (R_star). This
allows the removal of the sin i dependency of spectroscopically derived
extra-solar planet masses under the assumption that the planetary orbits lie
perpendicular to the stellar rotation axis. We have carried out an extensive
literature search and present a catalogue of v sin i, P_rot, and R_star
estimates for exoplanet host stars. In addition, we have used Hipparcos
parallaxes and the Barnes-Evans relationship to further supplement the R_star
estimates obtained from the literature. Using this catalogue, we have obtained
sin i estimates using a Markov-chain Monte Carlo analysis. This allows proper
1-sigma two-tailed confidence limits to be placed on the derived sin i's along
with the transit probability for each planet to be determined. While a small
proportion of systems yield sin i's significantly greater than 1, most likely
due to poor P_rot estimations, the large majority are acceptable. We are
further encouraged by the cases where we have data on transiting systems, as
the technique indicates inclinations of ~90 degrees and high transit
probabilities. In total, we estimate the true masses of 133 extra-solar
planets. Of these, only 6 have revised masses that place them above the 13
Jupiter mass deuterium burning limit. Our work reveals a population of
high-mass planets with low eccentricities and we speculate that these may
represent the signature of different planetary formation mechanisms at work.Comment: 40 pages, 6 tables, 2 figures. Accepted for publication in the
Monthly Notices of the Royal Astronomical Society after editing of Tables 1 &
6 for electronic publication. Html abstract shortened for astro-ph submissio
Moderate-cost approaches for hydrodynamic testing of high performance sailing vessels
This study examines the relative merits of physical testing techniques which may be used in early stage design for assessment of the resistance of high-performance sailing vessels. The hull chosen as a benchmark form is a high-speed hard-chine sailing dinghy. The hull proportions and shape are typical of modern trends in skiff design, but may also be considered to be broadly similar to some high performance yacht hulls. The 4.55m hull was tested at full scale in a moderate size towing tank, at 1:2.5 scale in the same tank, and at full-scale by towing on open water. Results show the mean discrepancy in the measured resistance between the open water towing and the full-scale tank test is around 4%. The challenges of full-scale open-water testing are discussed and several improvements identified for future work. Comparison of the full-scale results suggests that blockage and depth correction for the full-scale hull in the tank do not present a substantial problem for subcritical speeds. Larger discrepancies were found between resistance from the model scale and the full scale tank tests at higher speeds; it was speculated that these discrepancies relate to the differences in the detailed geometry of the model and full-scale boat, particularly in the region of the chines
High magnetic field studies of the Vortex Lattice structure in YBa2Cu3O7
We report on small angle neutron scattering measurements of the vortex
lattice in twin-free YBa2Cu3O7, extending the previously investigated maximum
field of 11~T up to 16.7~T with the field applied parallel to the c axis. This
is the first microscopic study of vortex matter in this region of the
superconducting phase. We find the high field VL displays a rhombic structure,
with a field-dependent coordination that passes through a square configuration,
and which does not lock-in to a field-independent structure. The VL pinning
reduces with increasing temperature, but is seen to affect the VL correlation
length even above the irreversibility temperature of the lattice structure. At
high field and temperature we observe a melting transition, which appears to be
first order, with no detectable signal from a vortex liquid above the
transition
Full pf shell study of A = 47 and A = 49 nuclei
Complete diagonalizations in the pf major shell, lead to very good agreement
with the experimental data (level schemes, transitions rates, and static
moments) for the A=47 and A=49 isotopes of Ca, Sc, Ti, V, Cr, and Mn.
Gamow-Teller and M1 strength functions are calculated. The necessary monopole
modifications to the realistic interactions are shown to be critically tested
by the spectroscopic factors for one particle transfer from 48Ca, reproduced in
detail by the calculations. The collective behaviour of 47Ti, and of the mirror
pairs 47V-47Cr and 49Cr-49Mn is found to follow at low spins the particle plus
rotor model. It is then analysed in terms of the approximate quasi-SU(3)
symmetry, for which some new results are given.Comment: 30 Pages, RevTeX and epsf.sty, 23 figures included. Postscript
version available at http://www.ft.uam.es/~gabriel/a47-49.ps.g
- …