43 research outputs found

    Atlanta scaled layouts from non-central panoramas

    Get PDF
    In this work we present a novel approach for 3D layout recovery of indoor environments using a non-central acquisition system. From a single non-central panorama, full and scaled 3D lines can be independently recovered by geometry reasoning without additional nor scale assumptions. However, their sensitivity to noise and complex geometric modeling has led these panoramas and required algorithms being little investigated. Our new pipeline aims to extract the boundaries of the structural lines of an indoor environment with a neural network and exploit the properties of non-central projection systems in a new geometrical processing to recover scaled 3D layouts. The results of our experiments show that we improve state-of-the-art methods for layout recovery and line extraction in non-central projection systems. We completely solve the problem both in Manhattan and Atlanta environments, handling occlusions and retrieving the metric scale of the room without extra measurements. As far as the authors’ knowledge goes, our approach is the first work using deep learning on non-central panoramas and recovering scaled layouts from single panoramas

    Non-central panorama indoor dataset

    Get PDF
    Omnidirectional images are one of the main sources of information for learning-based scene understanding algorithms. However, annotated datasets of omnidirectional images cannot keep the pace of these learning-based algorithms development. Among the different panoramas and in contrast to standard central ones, non-central panoramas provide geometrical information in the distortion of the image from which we can retrieve 3D information of the environment. However, due to the lack of commercial non-central devices, up until now there was no dataset of these kind of panoramas. In this data paper, we present the first dataset of non-central panoramas for indoor scene understanding. The dataset is composed of 2574 RGB non-central panoramas taken in around 650 different rooms. Each panorama has associated a depth map and annotations to obtain the layout of the room from the image as a structural edge map, list of corners in the image, the 3D corners of the room and the camera pose. The images are taken from photorealistic virtual environments and pixel-wise automatically annotated

    Complete Hilbert-Space Ergodicity in Quantum Dynamics of Generalized Fibonacci Drives

    Full text link
    Ergodicity of quantum dynamics is often defined through statistical properties of energy eigenstates, as exemplified by Berry's conjecture in single-particle quantum chaos and the eigenstate thermalization hypothesis in many-body settings. In this work, we investigate whether quantum systems can exhibit a stronger form of ergodicity, wherein any time-evolved state uniformly visits the entire Hilbert space over time. We call such a phenomenon complete Hilbert-space ergodicity (CHSE), which is more akin to the intuitive notion of ergodicity as an inherently dynamical concept. CHSE cannot hold for time-independent or even time-periodic Hamiltonian dynamics, owing to the existence of (quasi)energy eigenstates which precludes exploration of the full Hilbert space. However, we find that there exists a family of aperiodic, yet deterministic drives with minimal symbolic complexity -- generated by the Fibonacci word and its generalizations -- for which CHSE can be proven to occur. Our results provide a basis for understanding thermalization in general time-dependent quantum systems.Comment: 6 pages, 3 figures (main text); 14 pages, 3 figures (supplemental material

    Evaluation of Contrast Sensitivity, Chromatic Vision, and Reading Ability in Patients with Primary Open Angle Glaucoma

    Get PDF
    Purpose. To compare contrast sensitivity, acquired color vision deficiency, and reading ability in patients with glaucoma at different stages of the disease and to establish correlations between visual field parameters and visual function scores. Methods. This prospective cross-sectional study included 121 glaucoma patients. Subjects with a diagnosis of chronic open angle glaucoma were recruited and classified according to Hodapp-Parrish-Anderson criteria. Patients with severe visual field defects were excluded because they were older, which could bias the interpretation of visual function tests. Contrast sensitivity was measured using the Pelli-Robson Chart and the CSV1000E test. Chromatic vision was evaluated using the Farnsworth-panel D15 and the L''Anthony D15 tests of Vision Color Recorder software. Reading ability was measured using Radner-Vissum test. Results. Contrast sensitivity (with photopic and mesopic luminance with glare) differed significantly between patients with early and moderate visual field defects (p < 0.05). Reading ability scores and results of the chromatic vision tests did not differ significantly between the two groups. Significant and moderate Spearman correlations between visual field indexes and contrast sensitivity tests were detected. Conclusions. Contrast sensitivity was significantly worse in patients with moderate glaucoma compared to those with early-stage glaucoma. Evaluation of visual function in clinical practice provides important information to address a glaucoma patient''s vision complaints

    Utilidad del nuevo software MultiColor de SPECTRALIS® en la identificación de defectos de la capa de fibras nerviosas de la retina

    Get PDF
    La fotografía de fibras clásica, usada tradicionalmente para identificar defectos en la capa de fibras nerviosas de la retina (CFNR), tiene un uso limitado debido a la necesidad de un equipo fotográfico específico y un técnico experto en la adquisición de esta clase de imágenes. El nuevo módulo MultiColor de la tomografía de coherencia óptica (OCT) SPECTRALIS®, utilizando 3 longitudes de onda diferentes simultáneamente, es capaz de proporcionar imágenes en las que se identifican las estructuras de la retina en diferente color según su profundidad. Nos propusimos realizar un pequeño estudio de concordancia para determinar la utilidad del nuevo software MultiColor frente a la fotografía de fibras tradicional en la identificación de defectos en la CFNR. La concordancia interobservador en la interpretación de imágenes MultiColor fue buena (¿ = 0, 746; p < 0, 001); y se consiguieron identificar con MultiColor en torno al 70% de pacientes con glaucoma leve. Consideramos que el nuevo software MultiColor resulta útil en la evaluación de defectos de la CFNR, y es sencillo de realizar. The classical fibre photography traditionally used to identify defects in the retinal nerve fibre layer (RNFL), has been partially discontinued due to poor availability. The new MultiColour module of SPECTRALIS® Optical Coherence Tomography (OCT), using three different laser wavelengths simultaneously, can provide images that identify the structures of the retina in different colours according to their depth. A small concordance study was conducted to determine the usefulness of the new MultiColour software versus traditional fibre photography in identifying RNFL defects. The inter-observer agreement in the interpretation of MultiColour images was good (¿=.746; P<.001), as by using Multicolour they were able to identify around 70% of patients with mild glaucoma. It is believed that the new Multicolour software is useful in evaluating RNFL defects, and is easy to perform

    Diagnostic capability of a linear discriminant function applied to a novel Spectralis OCT glaucoma-detection protocol

    Get PDF
    Background Bruch membrane opening–minimum rim width (BMO–MRW) assessment offers a new diagnostic use in glaucoma patients of the Glaucoma Module Premium Edition (GMPE) available for the Spectralis optical coherence tomography (OCT) system. The objective of our research was to evaluate the diagnostic benefits of examining BMO–MRW and peripapillary retinal nerve fibre layer (pRNFL) readings acquired with Spectralis OCT to distinguish between healthy and mild glaucoma patients, comparing those readings with the standard pRNFL application. Moreover, we investigated whether using a particular combination of BMO–MRW and pRNFL parameters with a linear discriminant function (LDF) could further enhance glaucoma diagnosis. Methods One hundred thirty-six eyes from 136 individuals were incorporated into this observational, prospective cross-sectional study: 68 mild primary open-angle glaucoma (POAG) patients according to the Hodapp-Parrish-Anderson criteria (mean deviation between 0 and?-?6?dB) and 68 healthy control subjects selected by Propensity Score Matching. MRW and pRNFL thickness around the disc (diameters: 3.5?mm, 4.1?mm, and 4.7?mm) were obtained using the BMO–MRW protocol, and pRNFL thickness at 3.5?mm was obtained with the standard glaucoma application. The group data were contrasted. One sample was chosen at random to develop the LDF (teaching set: 34 healthy subjects and 34 POAG patients) using a combination of MRW and pRNFL parameters (acquired with the BMO–MRW protocol); the other sample provided a test of how the LDF performed on an independent group (validating set: 34 healthy subjects and 34 POAG patients). The receiver operating curves (ROCs) were plotted for every measurement and contrasted with the proposed LDF. The OCT parameters with the best area under the receiver operating characteristic curve (AUC) were determined. Results Global MRW and pRNFL thicknesses were significantly thinner in the POAG group (p?<? 0.001). The BMO–MRW parameters showed good diagnostic accuracy; the largest AUCs reached 0.875 for the LDF and 0.879 for global RNFL thickness using the standard glaucoma application. There were no statistical differences between the AUCs calculated. Conclusions BMO–MRW parameters show a strong capability to differentiate between mild glaucoma and control eyes. Our LDF based on the new BMO–MRW OCT protocol did not perform better than isolated parameters

    Alchemical Design of Pharmacological Chaperones with Higher Affinity for Phenylalanine Hydroxylase

    Get PDF
    Phenylketonuria (PKU) is a rare metabolic disease caused by variations in a human gene, PAH, encoding phenylalanine hydroxylase (PAH), and the enzyme converting the essential amino acid phenylalanine into tyrosine. Many PKU-causing variations compromise the conformational stability of the encoded enzyme, decreasing or abolishing its catalytic activity, and leading to an elevated concentration of phenylalanine in the blood, which is neurotoxic. Several therapeutic approaches have been developed to treat the more severe manifestations of the disorder, but they are either not entirely effective or difficult to adhere to throughout life. In a search for novel pharmacological chaperones to treat PKU, a lead compound was discovered (compound IV) that exhibited promising in vitro and in vivo chaperoning activity on PAH. The structure of the PAH-IV complex has been reported. Here, using alchemical free energy calculations (AFEC) on the structure of the PAH-IV complex, we design a new generation of compound IV-analogues with a higher affinity for the enzyme. Seventeen novel analogues were synthesized, and thermal shift and isothermal titration calorimetry (ITC) assays were performed to experimentally evaluate their stabilizing effect and their affinity for the enzyme. Most of the new derivatives bind to PAH tighter than lead compound IV and induce a greater thermostabilization of the enzyme upon binding. Importantly, the correspondence between the calculated alchemical binding free energies and the experimentally determined ¿¿Gb values is excellent, which supports the use of AFEC to design pharmacological chaperones to treat PKU using the X-ray structure of their complexes with the target PAH enzyme. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Maternal hyperleptinemia is associated with male offspring’s altered vascular function and structure in mice

    Get PDF
    Children of mothers with gestational diabetes have greater risk of developing hypertension but little is known about the mechanisms by which this occurs. The objective of this study was to test the hypothesis that high maternal concentrations of leptin during pregnancy, which are present in mothers with gestational diabetes and/or obesity, alter blood pressure, vascular structure and vascular function in offspring. Wildtype (WT) offspring of hyperleptinemic, normoglycemic, Lepr db/+ dams were compared to genotype matched offspring of WT-control dams. Vascular function was assessed in male offspring at 6, and at 31 weeks of age after half the offspring had been fed a high fat, high sucrose diet (HFD) for 6 weeks. Blood pressure was increased by HFD but not affected by maternal hyperleptinemia. On a standard diet, offspring of hyperleptinemic dams had outwardly remodeled mesenteric arteries and an enhanced vasodilatory response to insulin. In offspring of WT but not Leprdb/+ dams, HFD induced vessel hypertrophy and enhanced vasodilatory responses to acetylcholine, while HFD reduced insulin responsiveness in offspring of hyperleptinemic dams. Offspring of hyperleptinemic dams had stiffer arteries regardless of diet. Therefore, while maternal hyperleptinemia was largely beneficial to offspring vascular health under astandard diet, it had detrimental effects in offspring fed HFD. These results suggest that circulating maternal leptin concentrations may interact with other factors in the pre- and post-natal environments to contribute to altered vascular function in offspring of diabetic pregnancie

    Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

    Get PDF
    Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited
    corecore