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a b s t r a c t 

In this work we present a novel approach for 3D layout recovery of indoor environments using a non- 

central acquisition system. From a single non-central panorama, full and scaled 3D lines can be indepen- 

dently recovered by geometry reasoning without additional nor scale assumptions. However, their sensi- 

tivity to noise and complex geometric modeling has led these panoramas and required algorithms being 

little investigated. Our new pipeline aims to extract the boundaries of the structural lines of an indoor en- 

vironment with a neural network and exploit the properties of non-central projection systems in a new 

geometrical processing to recover scaled 3D layouts. The results of our experiments show that we im- 

prove state-of-the-art methods for layout recovery and line extraction in non-central projection systems. 

We completely solve the problem both in Manhattan and Atlanta environments, handling occlusions and 

retrieving the metric scale of the room without extra measurements. As far as the authors’ knowledge 

goes, our approach is the first work using deep learning on non-central panoramas and recovering scaled 

layouts from single panoramas. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Layout recovery and 3D understanding of indoor environments 

s a hot topic in computer vision research [1,2] . Recovering the in- 

ormation of an environment from a single view is an attractive 

ool for different applications such as virtual or augmented real- 

ty [3] and human pose estimation [4,5] . Previous works for layout 

ecovery relied on pure geometrical processing [6] . Those methods 

sually required hard layout assumptions and iterative proccesses 

n order to obtain proper results. Besides, since many hypotheses 

nd verifications should be made, these approaches derive in very 

low implementations, not suitable for real time applications. The 

evelopment of neural networks made the problem of layout re- 

overy more accurate, efficient and faster. The high and low level 

eatures obtained by deep learning architectures have proven to be 

seful for structural recovery of indoor environments. 

Through the development of algorithms for layout recovery, dif- 

erent kinds of acquisition systems have been used in order to ob- 

ain more information of the environment with as less images as 

ossible. An example is the evolution from perspective images to 
∗ Corresponding author. 
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quirectangular panoramas, which acquire much more information 

f the environment in a single image.With this extra information, 

etter reconstructions from more complex environments could be 

ade. In this paper, we propose to go a step further and evolve 

aking as acquisition system the non-central circular panoramas 

roposed in [7,8] (for simplicity, we will call these as non-central 

anoramas in the rest of the article). These panoramas provide 

60 information of the environment and the image distortion of 

he non-central acquisition systems includes subtle differences al- 

owing geometric 3D reasoning. In particular, the distortion of the 

urves fitting the projections of lines encodes the full 3D descrip- 

ion of the line. This characteristic of non-central projection sys- 

ems is a clear advantage for environment reconstruction, since it 

llows to recover the scale of the environment directly from the 

mage, without measurement assumptions (e.g. camera position or 

oom height). However, due to their sensitivity to noise and com- 

lex geometric reasoning, non-central panoramas have been lit- 

le investigated. Fig. 1 shows two panoramas, one central and the 

ther non-central, in the same environment and from the same 

osition. From the non-central panorama we can recover a more 

ccurate layout, including the real scale. 

In this work we present the first proposal of layout recovery 

ith single non-central panoramas and the first deep learning ap- 

roach for this kind of images. We propose to adapt the neural net- 

ork architecture of HorizonNet [9] to non-central circular panora- 
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Fig. 1. Central (top-left) and non-central (bottom-left) panoramas from the same virtual environment taken in the same position. Both panoramas have similar appearance 

but there are subtle differences in favor of the second if we want to obtain 3D information. On the right, the scaled layout from a single non-central panorama in Atlanta 

world. The green wireframe shows the real 3D layout of the virtual environment. 

m

f

m

a

g

v

n

t

f

l

a

a

n

w

c

w

p

H

a

s

o

2

f

s

[

m

p

m

g

e

g

c

[

s

p

t

c

a

t

s

f

i

c

a

s

a

c

s

t

t

o

o

d

[

t

i

o

p

g

b

p

t

w

c

t

h

r

r

r

r

t

o

[

i

1

w

r

as for the extraction of the boundaries of the structural lines 

rom indoor environments. As in [9] , we assume that our panora- 

as are horizontally oriented and that the layout share the ceiling 

nd floor heights. These restrictions will give strong priors in the 

eometrical proccessing. Taking advantage of the omnidirectional 

iew of non-central panoramas and the unique properties of the 

on-central projection systems, we extract the 3D information of 

he structural lines provided by the network. The experiments per- 

ormed show that our pipeline outperforms the state of the art in 

ayout recovery by a margin. The main contributions of this paper 

re as follow: Two new geometrical solvers to obtain the layout of 

n environment in a Manhattan or Atlanta world assumption for 

on-central projection systems. First work that uses deep learning 

ith non-central projection systems. First work of scaled layout re- 

overy without extra measurements from Manhattan and Atlanta 

orld assumptions, handling occlusions, from a single non-central 

anorama. 

Preliminary results of our work have been presented in [10] . 

ere, the proposed approach is revised and completed, including 

n ablation study, a more complete experimentation and compari- 

on with state of the art methods and more detailed explanations 

f the basis and implementation. 

. State of the art 

Non-central projection systems have been extensely studied 

rom their different acquisition systems [11] . Different works have 

et the fundamentals on catadioptric systems [12] based on conical 

13] or spherical [14] mirrors. Other non-central images come from 

oving cameras, as the pushbroom camera [15] or the non-central 

anorama [7,8] . These non-central projection systems present geo- 

etrical properties that allow to recover 3D information from sin- 

le images with geometric reasoning. In particular, several works 

xploit that a 3D line can be recovered with scale from a sin- 

le non-central projection [16] . The fundamentals for this approach 

onsist in computing the intersection of a line by four generic rays 

17] . However, although it is theoretically possible to recover the 

caled, full 3D reconstruction of a line from a single non-central 

rojection, in practice the results are so sensitive to noise and 

herefore it is not possible to directly use these approaches with 

urrent non-central systems. For this reason, more recent works 
2 
im to improve the accuracy of 3D lines fitting by imposing struc- 

ural constraints. As example, in [18] the line extraction is con- 

trained to lines parallel to a known plane, which can be used 

or extracting horizontal lines from a non-oriented camera by us- 

ng the gravity direction, for example from an IMU, as prior. Other 

onstraints such as parallel lines or intersecting orthogonal lines 

re well studied and solved in [19] , where they present a minimal 

olution to be included in a robust approach. 

When the geometric constraints of structural lines are glob- 

lly considered, lines and their intersections are enclosed in the 

oncept of layout. The layout of indoor environments provides a 

trong prior for many computer vision tasks. Several works on vir- 

ual or augmented reality [3] , object recognition [20–22] , segmen- 

ation [23,24] and human pose estimation [4,5] rely on information 

f the environment, which is more easily obtainable once the lay- 

ut is known. Many different methods have been developed in or- 

er to recover the layout of a room from different central cameras 

25] . Particularly, in recent years, the use of omnidirectional cen- 

ral images is on the rise, since a single image can provide enough 

nformation to make an estimation for a whole room [26–28] . One 

f the first attempts for layout estimation is the work [29] which 

resents an implementation where many 3D layout hypotheses are 

enerated and then ranked by a Support Vector Machine. Then the 

est ranked hypotheses are selected and compared with the in- 

ut image to test its validity. More recent approaches take advan- 

age of neural networks to estimate the layouts in a more efficient 

ay. Corners for Layouts (CFL) [30] uses an encoder-decoder ar- 

hitecture with convolutions adapted to the spherical distortion of 

he equirectangular panorama. The output of the network are two 

eat-maps for the corners and edges that compose the structure of 

ooms. With a post-processing of this information, an up-to-scale 

econstruction of Manhattan environments can be obtained. Other 

ecent approaches combine the convolutional networks with recur- 

ent neural networks, which allow to obtain dependencies along 

he image, extracting the boundaries of the structural lines. Relying 

n different geometry constraints, HorizonNet [9] and AtlantaNet 

31] obtain a 1D representation of corners, as a probability of hav- 

ng a wall-wall intersection at a certain image column, and other 

D representation of the ceiling-wall and floor-wall intersections 

hich form the structural lines of the room. This minimal rep- 

esentation allows to obtain a more precise approximation of the 
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Fig. 2. Toroidal projection of non-central panoramas. For each point of the circular 

trajectory of optical centers with radius R c , there is a ring in which the projection is 

central. A 3D line L is projected in the toroidal surface. A projecting ray � intersects 

the line giving a point in the toroidal surface for a unique optical center. 
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ayout of the room. As in other works, after a post-processing, an 

p-to-scale layout estimation can be obtained. 

In our proposal, we overcome the problem of structural lines 

xtraction in non-central panoramas adapting the neural network 

f HorizonNet [9] . Then, we propose a new geometrical process- 

ng, which takes advantage of two new solvers that fit Manhat- 

an and Atlanta layouts, to recover the 3D layout of indoor envi- 

onments. Besides, exploiting the geometrical properties of non- 

entral projection systems in our geometrical processing, we are 

ble to recover the scale of the 3D layout without extra measure- 

ents, which no state-of-the-art method is able to do. 

. The non-central panorama 

Central projection systems are those acquisition systems where 

ll projecting rays that form the image intersect at a single point, 

alled optical center. The pinhole camera model or the spherical 

anorama are examples of central projection systems. By contrast, 

on-central projection systems do not have a unique optical center, 

hat means, the rays that form the images do not pass through a 

nique point. This nature leads to a harder modeling of the projec- 

ion and management of the information. Nevertheless, this char- 

cteristic allows to obtain more geometric information from the 

mage than from central projection systems. In particular, we can 

xtract the 3D information of lines directly from a single image. 

The non-central panorama is a projection model, presented in 

32] , with symmetry of revolution in which each projecting ray in- 

ersects both an axis n and a circle of radius R c (see Fig. 2 ). In the

ast two decades some works have studied the geometrical proper- 

ies of non-central panoramas [8,33] and other non-central projec- 

ion systems [11,34] . Taking advantage of the unique geometrical 

roperties of this acquisition systems, different applications have 

een already studied, as 3D line extraction [18,35] . 

The non-central panorama can be modeled as the projection of 

he environment into a toroidal surface ( Fig. 2 ). The optical cen- 

er is distributed in a circle of radius R c , centered in an axis n . For

ach optical center, we have a region where the projection is lo- 

ally central, which correspond with one column in the panoramic 

mage. We use Plücker coordinates [36] to define the backward 

rojection function of the system as well as the 3D lines in the 

nvironment. 

The notation to define the projection model and the math pre- 

ented in this paper is as follows. For projecting rays and lines, 

efined in Plücker coordinates, we will use bold uppercase letters 

e.g. �, L ). For vectors that belong to R 

3 , bold lower case letters

e.g. n ), while vectors of greater dimmensions are presented as up- 

er case letters in Euler font (e.g. W ). Matrices are presented in the

erif font as uppercase letters (e.g. A ). Scalar values are presented 
3 
s standard text (e.g. R c , ϕ). 

 = atan 2(y, x ) ; φ = atan 

( 

z √ 

x 2 + y 2 − wR c 

) 

(1) 

j = n columns 

ϕ − ϕ ini 

ϕ end − ϕ ini 

; i = m rows 
φ − φini 

φend − φini 

(2) 

The forward projection provides the pixel coordinates (i, j) for 

ach 3D point (x, y, z, w ) T defined in homogeneous coordinates. 

ach point is defined by two angles (φ, ϕ ) from its correspond- 

ng optical center as defined in Eq. (1) . The angles are trans- 

ormed into pixel coordinates (2) taking into account the image 

esolution (m rows , n columns ) and the horizontal (φini , φend ) and ver- 

ical (ϕ ini , ϕ end ) fields of view. 

� = (ξ; ξ) 

= ( cos φ cos ϕ ; cos φ sin ϕ ; sin φ; R c sin φ sin ϕ ;
−R c sin φ cos ϕ; 0) 

(3) 

The backward projection model provides the projecting rays in 

lücker coordinates from each pixel in the non-central panorama. 

he pixel coordinates are transformed back into spherical coordi- 

ates taking into account the image resolution and field of views. 

hen, the projecting ray (3) is computed considering the radius R c 
f the non-central acquisition system. 

.1. Computing 3D lines from a non-central projection 

Computing 3D lines from a single image is a particular property 

e want to exploit. Here we introduce how to compute a 3D line 

rom a non-central projection system. Defining in Plücker coordi- 

ates a 3D line as L = (l T , ̄l T ) T ∈ P 

5 (where l ∈ R 

3 and l̄ ∈ R 

3 ) and

 projecting ray � = (ξT , ξ̄T ) T ∈ P 

5 , their intersection is defined by 

he side operator [36] as side (L , �) = l T ξ̄ + ̄l T ξ = 0 . 

Given that a 3D line has four degrees of freedom, we need, at 

east, 4 independent equations to solve for L . In general, four pro- 

ecting rays from a 3D line generate four independent constraints 

rom where we can compute the 3D line [17] . However, we can 

nd some degenerate cases where four projecting rays do not gen- 

rate independent constraints, e.g. the rays are coplanar with the 

evolution axis or with the plane containing the circle of optical 

enters. 

. Layout estimation proposal 

Our proposal for layout estimation is a new pipeline composed 

y two main blocks (see Fig. 3 ). In a first block, we use a neu-

al network to obtain the boundaries of the structural lines of an 

ndoor environment from an image. On the second block, we ge- 

metrically process the information provided by the network, ex- 

loiting the properties of non-central projection systems and re- 

overing the scaled layout. 

With respect to the first block, [18] and [29] propose geomet- 

ical methods based on hypothesis generation-verification to ex- 

ract lines and layouts respectively while [9] and [31] rely on the 

se of neural networks for layout recovery. In our proposal we 

ombine both solutions in order to obtain the scaled layout from 

 single non-central panorama. The use of a neural network al- 

ows to obtain the structural lines of an environment faster than 

ith classical approaches of hypothesis generation-verification. In 

he next section we define in more detail the network architec- 

ure proposed and its advantages and disadvantages. On the other 

and, we aim to exploit the geometrical properties of non-central 

rojection systems. In Section 5 we present in detail the different 

eometrical solutions proposed to solve the layout recovery prob- 

em and the geometrical pipeline proposed to obtain scaled layouts 

rom single panoramas. 
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Fig. 3. Pipeline of our proposal. In a first stage, the neural network extracts the boundaries of the structural lines of the room as well as a probability of corner positions 

from the non-central panorama. On a second stage, our proposed geometrical processing exploits the properties of non-central projection systems to recover the 3D of the 

layout from the information provided by the network. 

Fig. 4. The non-central panorama is processed by Non-central HorizonNet, which is an adaptation of the work [9] . First, it goes through a ResNet50, where high and low- 

level features are extracted. After a set of convolutions, the result is concatenated and fed to an array of bidirectional LSTMs. The network provides the boundaries of the 

structural lines of ceiling and floor, as well as the corners of the room as three separate 1D arrays. 

4

t

c

p

[

s

t

O

i

r

t

b

t

c

w

b

r

c

i

a

e

t

T

p

r

n

m

w

A

w

d

t

i

t

w

p

e

t

[

e

o

s

p

t

p

[

f

t

s

c

t

b

t

o

m

5

o

c

w

e

n

w

t

t

t

m

t

.1. Non-central horizonnet 

We propose to adapt an existing neural network in order to ob- 

ain the structural lines of indoor environments from non-central 

ircular panoramas (see Fig. 4 ). This architecture is divided in two 

arts: a convolutional part, formed by the first layers of ResNet-50 

37] and a set of convolutions; and a recurrent part, formed by a 

et of bi-directional LSTMs [38] . From this architecture, we obtain 

hree 1D arrays with the boundaries information from the image. 

ne of the arrays contains the probability of finding a wall-wall 

ntersection in each column of the image. The other two 1D ar- 

ays provide the pixel of the intersection between the ceiling or 

he floor with the walls. From these three 1D arrays we obtain the 

oundaries of each of the structural lines that form the layout of 

he room. 

The advantage of this architecture when dealing with non- 

entral panoramas resides in how the network extracts the ceiling- 

all and floor-wall intersections: column by column. Due to the 

i-directional LSTMs, each column of the image is treated sepa- 

ately in order to recover the structural lines of the room. In our 

ase, where non-central panoramas are used, this property is very 

nteresting. As presented in Section 3 , for each optical center, there 

re regions of the image that share the optical center. In particular, 

ach column of the image is locally central, allowing the network 

o work in a central projection system for each separate column. 

hus, this architecture proposed for central projection systems fits 

erfectly and is very suitable to extract the structural lines of a 

oom from a non-central panorama. 

HorizonNet imposes some restrictions required to adapt it for 

on-central panoramas. The main restriction is that the image 

ust be oriented with the vertical direction. It means, that the 

all-wall intersections form a straight vertical line in the image. 

ssuming this restriction, non-central panoramas must be acquired 

ith the revolution axis of the system aligned with the gravity 

irection. This configuration introduces some disadvantages, since 

he depth and direction of lines parallel to the axis, the wall-wall 

ntersection in this case, cannot be directly estimated (are one of 

he degenerated cases mentioned in Section 3.1 ). However, since 

w

4 
e know the gravity direction and that the structural lines will be 

erpendicular to it, we can turn the disadvantage into advantage, 

xploiting this constrait in the geometrical processisng to estimate 

he 3D lines that form the layout. 

The original network architecture is trained in PanoContext 

29] and Stanford 2D-3D [39] . These datasets are formed by 

quirectangular panoramas obtained from indoor environments. In 

ur proposal, we start with the network trained on these datasets, 

ince the distortion of equirectangular panoramas and non-central 

anoramas are similar. Afterwards we add a fine tuning to learn 

he particular distortion of the non-central panorama. For that pur- 

ose, we train the network, starting with the weights presented in 

9] , with a dataset formed of non-central panoramas and 3D in- 

ormation of the environment. However, since non-central projec- 

ion systems are little used, there is no public dataset available. To 

olve this problem, we have generated and used a dataset of non- 

entral panoramas from synthetic environments to fill this gap in 

he resources (more details in Section 6.1 ). Once the network has 

een fine-tuned, it has learned the subtle different distortion of 

he non-central panoramas, providing more accurate information 

f the boundaries of the structural lines of the different environ- 

ents. 

. Geometrical processing 

The next step in our proposal is to take advantage of the ge- 

metrical properties of the non-central panorama in order to re- 

over the 3D layout and the scale of the environment. To do that, 

e propose a geometrical pipeline, which includes different lin- 

ar solvers, that takes as input the information provided by the 

etwork and outputs the 3D corners of the room. In this section, 

e present the geometrical problem, defined as a plane extrac- 

ion problem, and we provide two different solutions to jointly ob- 

ain the whole layout of a room under different world assump- 

ions. One of the solutions is for Altanta environments, which are 

ore general and challenging. The second solution is for Manhat- 

an environments, which can be seen as a special case of Atlanta, 

here we have more geometric restrictions. After these solutions, 
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Fig. 5. Rays and wall parameter definition. The wall reference system is defined 

as { e 1 , e 2 , e 3 } ; � and X are the projecting rays; (l , ̄l ) and (m , m̄ ) are the ceiling 

and floor lines that define the wall; x L , x M are the closest points of the lines to the 

reference system; h c , h f and d are the distance from the reference system to the 

ceiling, floor and wall planes respectively. 
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e present our detailed geometrical pipeline, that includes several 

teps to make more robust our implementation as well as handling 

ccluded walls in the environment. 

.1. Vertical wall extraction 

Man-made environments are usually built by vertical walls 

hat intersect the ceiling and the floor in two horizontal parallel 

traight lines. Thus, we define a wall as a set of two horizontal par-

llel lines (L , M ) contained in a vertical plane (see Fig. 5 ). We de-

ne the ceiling line L = 

(
l T , ̄l T 

)T 
and the floor line M = 

(
m 

T , m̄ 

T 
)T 

n Plücker coordinates. We also define an orthonormal reference 

ystem placed in the origin and oriented with the vertical wall as 

 e 1 , e 2 , e 3 } . From the wall definition shown in Fig. 5 , the lines di-

ection coincide with the first component of the reference system 

 = m = e 1 . To define the momentum vector of the lines with re-

pect to the reference system, we compute the cross product be- 

ween the closest point of the line to the origin and the line di- 

ection as: l̄ = x L × l and m̄ = x M 

× m , where x L and x M 

are the 

losest points of the lines to the origin. These points are defined 

s x L = de 2 + h c e 3 and x M 

= de 2 + h f e 3 , where h c , h f and d refer

o the distance from the reference system to the ceiling, floor and 

all planes respectively. 

ide ( �, L ) = ξT l + ξ
T 

l = ξT ( h c e 2 − de 3 ) + ξ
T 

e 1 = 0 (4) 

ide (X , M ) = χT m̄ + χ̄T m = χT 
(
h f e 2 − de 3 

)
+ χ̄T e 1 = 0 (5)

To compute the lines that define a wall from an image, we 

eed the projecting rays of these lines. In our proposal, the neural 

etwork provides the pixel information of the boundaries of the 

rojection of structural lines in the environment. From this pixel 

nformation, we can compute the projecting rays to the ceiling 

= 

(
ξT , ξ̄T 

)T 
and floor X = 

(
χT , χ̄T 

)T 
lines from the backprojec- 

ion model seen in Section 3 . Known the projecting rays, we aim 

o obtain the 3D lines that define each wall. The relation among 

he projecting rays and the wall lines is given by their intersec- 

ion, defined with the side operator in Plücker coordinates (see 

ection 3.1 ). From our definition of the wall, Eqs. (4) and (5) de-

ne the intersection of the projecting rays and the walls of the 

ayout. Trying to solve directly this ecuations may be difficult since, 
5 
n general, is a non-linear problem. Instead, we propose a DLT-like 

40] approach where we compute the solution as a linear problem. 

In a first approach, we aim to extract each wall of the lay- 

ut independently. Let the main direction of a wall be hor- 

zontal and described by the vector u = (u x , u y ) 
T such that

 = m = (u x , u y , 0) T . Then, the orthonormal reference system

riented with the wall can be re-defined as: { e 1 , e 2 , e 3 } =
 (u x , u y , 0) T , (−u y , u x , 0) T , (0 , 0 , 1) T } . From this parameterization,

qs. (4) and (5) can be writen as: 

ξ 1 u x + ξ 2 u y + ( ξ2 u x − ξ1 u y ) h c − dξ3 = 0 ;
χ1 u x + χ2 u y + ( χ2 u x − χ1 u y ) h f − dχ3 = 0 

(6) 

These equations are non-linear since u , h c and h f are coupled. 

t this point, we define the new variables v = h c u and w = h f u .

rom this new variable definition, Eq. (6) become linear, obtaining 

he following equations: 

ξ 1 u x + ξ 2 u y − ξ1 v y + ξ2 v x − dξ3 = 0 ;
χ1 u x − χ2 u y − χ1 w y + χ2 w x − dχ3 = 0 

(7) 

Now, we can build a linear system A W = 0 , where the matrix

 is full-filed with relations (7) and W = (u 

T , v T , w 

T , d) T is the

nknown wall homogeneous vector. Notice that u , v and w are 

ndependent variables which can be non-parallel. Since we have 

efined these vectors as proportional, to impose the parallelism 

e compute the null space of the system with a Singular Value 

ecomposition (SVD), obtaining a parametric solution which is a 

inear combination of singular vectors parameterized with λi . No- 

ice that, two horizontal lines contained in a vertical plane have 

 dregrees of freedom. At this point we have two options to solve 

he problem. In one hand, a minimal solution would require 2 pro- 

ecting rays for each line of the wall, describing the null space 

ith three singular vectors and two parameters λ1 and λ2 , such 

s W = W 0 + λ1 W 1 + λ2 W 2 . By solving a system of two quadratic

quations with action matrices or as a polynomial eigenvalue vec- 

or [41] , we obtain a set of 4 different solutions which should 

e discriminated. On the other hand, since the network provides 

nought robust information of the structural lines, we propose to 

olve the over-determined case, taking at least 3 rays for each line 

f the wall. 

λ( v 1 − h c u 1 ) = h c u 0 − v 0 ;
λ
(
w 1 − h f u 1 

)
= h f u 0 − w 0 

(8) 

In this over-determined case, the null space is described by a 

inear combination involving only one parameter λ, such as W = 

 0 + λW 1 . Imposing the parallelism restriction for u , v and w as

hown in Eq. (8) , we can derive two uncoupled quadratic equa- 

ions for λ as: (
u y 0 u x 1 − u x 0 u y 1 

)
λ2 + (

u x 0 v y 1 + v x 0 u y 1 − u y 0 v x 1 − v y 0 u x 1 

)
λ + (

v y 0 v x 1 − v x 0 v y 1 
)

= 0 (9) 

(
u y 0 u x 1 − u x 0 u y 1 

)
λ2 + (

u x 0 v y 1 + w x 0 u y 1 − u y 0 w x 1 − w y 0 u x 1 

)
λ + (

w y 0 v x 1 − w x 0 w y 1 

)
= 0 (10) 

Computing the solution for λ in each equation, we get four so- 

utions. However, the solutions from Eqs. (9) and (10) are paired, 

hich means that efectively we have only two different solutions 

or λ. The global orientation prior allows to easily discriminate 

hich of the solutions is the correct one. Computing W for each 
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and extracting the ceiling h c and floor h f plane distances, we 

bserve that only one of the solutions sets h c > h f . Taking the cor-

ect value of λ, we have defined the wall direction u , the ceiling

 c , floor h f and wall d planes distance to the acquisition system as 

ell as the Plücker coordinates of the ceiling and floor lines that 

efine the wall. 

.2. Manhattan layout solver 

Notice that in a Manhattan world assumption, there is a set of 

alls sharing the wall direction u = (u x , u y ) 
T and the complemen-

ary set of walls share the orthogonal direction u ⊥ = (−u y , u x ) T .

ince we assume that the rooms have single ceiling and floor 

lanes, all the walls share the ceiling h c and floor h f heights. 

efining the projecting rays of the walls with direction u ⊥ as 

Z, �) , we can redefine the Eq. (7) for this set of walls as: 

ζ 2 u x − ζ 1 u y − ζ2 v y − ζ1 v x − d i ζ3 = 0 ;
ψ 2 u x − ψ 1 u y − ψ 2 w y − ψ 1 w x − d i ψ 3 = 0 

(11) 

Then, we can extend the DLT-like approach to fit all the set 

f walls computing the null space of A L M 

= 0 , where L M 

=
u 

T , v T , w 

T , d 1 , · · · , d N ) 
T , where N is the number of walls, and the

atrix A is full-filed with relations (7) for a set of walls and 

11) for the other. This approach allows to jointly obtain the main 

irections in the Manhattan world assumption, the height of the 

oom and the walls locations. 

.3. Atlanta layout solver 

In the case of Atlanta world assumption, each wall of the room 

ould have a different horizontal direction, therefore we must find 

 new approach to obtain the whole layout. Notice that from the 

reviously proposed solver, we can extract each wall indepen- 

ently. However, with this approach we do not impose that the 

alls share the ceiling and floor heights. Nevertheless, if the di- 

ection of each wall is known (e.g. extracting each wall indepen- 

ently), we can derive a new linear solution for the whole layout. 

ξ1 

’ + h c ξ ’ 
2 − dξ ’ 

3 = 0 ;
χ1 

’ + h f χ
’ 
2 − dχ ’ 

3 = 0 

(12) 

Making a first independent wall extraction, we obtain the di- 

ection for each wall. Changing the refence system of the pro- 

ecting rays from the acquisition system to each wall local ref- 

rence system, Eqs. (4) and (5) become the linear expresions 

12) , where �′ and X 

′ are the projecting rays in each wall refer- 

nce system. Then we can solve the null space of the linear sys- 

em A L A = 0 , where A is a matrix full-filed with Eq. (12) and

 A = (1 , h c , h f , d 1 , · · · , d N ) 
T , where N is the number of walls in the

nvironment. In this approach, once known the walls directions, 

e can simultaneously compute the room height and the walls lo- 

ation. 

.4. Detailed geometric pipeline 

In order to improve the robustness of our method, we propose a 

ew full geometric pipeline that includes the two new solvers pre- 

ented before (see Fig. 6 ). This pipeline takes as input the informa- 

ion provided by the network and gives as output the 3D lines and 

orners that form the layout. This geometric pipeline is divided in 

wo branches, one for Manhattan world assumption and other for 

tlanta world. This is due to the different management of the oc- 

lusions in each world assumption. 

The geometric pipeline starts with a RANSAC algorithm to fil- 

er possible spurious data. Here could rise a question: What is 
6 
he advantage of using these structural deep learning based edges 

nd corners over classic Canny edges if we still have to use a 

ANSAC approach? The main advantage is the huge reduction of 

he number of required hypotheses. Consider the number of hy- 

otheses in a RANSAC approach n hyp which is typically estimated 

y n hyp = 

log (1 −P) 

log (1 −(1 −ε) k ) 
, where P is the probability of not failing in 

he random search, ε is the rate of outliers and k the number of 

lements defining the hypothesis. Assuming that we want to ex- 

ract a wall, with a probability of P = 99 . 99% of not failing, we

eed two lines, defined by 3 points each. We assume a rate of 

utliers of ε = 20% in the input data. With our method, we have 

ell defined which data belong to the ceiling line and which to 

he floor line and the data of each wall separately. So, we assume 

hat our ε = 20% and that we only need k = 3 samples to define

he two lines, since data is defined by column and we can take 

ne value for each line in each column. This computation leaves 

hat our implementation needs n hyp = 12 , 84 hypotheses to define 

he best wall that fits the data. With state-of-the-art approaches as 

18,35] , where an edge detector is used, as Canny, the data is not 

s well defined and structured. Thus, the probability of a sample 

een an inlier is reduced by half, since it can be part of the ceil-

ng or the floor. This also means that we need the double of sam- 

les, since they are not paired. This assumptions lead to a number 

f outliers of ε = 60% and a number of samples k = 6 , obtaining

 hyp = 2244 hypotheses per wall. This difference in the number of 

ypotheses is reduced by the neural network. Thus, with the so- 

ution for a single wall presented in Section 5.1 as hypothesis in 

he RANSAC, we get the 3D lines that better fit the information 

rovided by the network. After this step, the pipeline branches de- 

ending on the world assumption. 

Assuming a Manhattan world . We cluster the extracted walls 

nto two classes corresponding to the main perpendicular direc- 

ions. In this clustering, we label each wall with the index of one 

f the clusters corresponding to different perpendicular Manhat- 

an directions. In a second step, we manage the occlusions in the 

anhattan environment. Since a Manhattan world only have two 

ain directions, these must be alternating in consecutive walls. If 

wo consecutive walls have the same direction means that an oc- 

luded wall is between them. In this case, we add a perpendicular 

all between the occluded and occluder walls to keep the alterna- 

ion in the walls direction. Finally, once we know the number of 

alls and their Manhattan direction label (defined as u and u ⊥ in 

ection 5.2 ) we apply the Manhattan layout solver. This solver will 

rovide the walls direction that better fit the whole environment 

s well as the height of the room and the walls location. Once ob- 

ained the lines that define the walls, we can obtain the 3D cor- 

ers of the room computing the intersection of these lines, which 

s easy since ceiling lines are co-planar, as well as floor lines. 

Assuming an Atlanta world . We do not know the number of 

ominant directions in an Atlanta environment. Besides, we can- 

ot find an occlusion looking at the walls direction, since two con- 

ecutive walls may have a similar orientation. Thus, Atlanta envi- 

oments must be tackled in a different way than the Manhattan 

nes. 

Since Atlanta environments do not have a defined number 

f main directions, we cannot cluster the walls extracted in the 

ANSAC by their direction. By contrast, we consider this first wall 

irection estimation good enough and use it as initial value in 

ur pipeline. Then, assuming that the walls direction is known, 

e can apply the solution for Atlanta environments presented in 

ection 5.3 , where we jointly obtain the room height and the walls 

ocations. 

Once defined the lines that form the walls of the environment, 

e compute the 3D corners. Notice that if we compute the corners 

s lines intersection, we may make impossible layouts if there is 
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Fig. 6. Geometrical pipeline. The input is the pixel information provided by the network. First, a Ransac makes a first wall direction estimation. Then the pipeline branches. 

For Manhattan world assumption, we cluster the walls direction, then handle the possible occlusions and compute the direction labels of the walls. Finally we compute the 

Manhattan layout with the proposed solver. For Atlanta world assumption, once defined the walls directions, we implement the proposed layout solver. Then we search for 

occlusions. As last step, a final adjustment of the corners is made to obtain the final 3D layout. 

Fig. 7. Atlanta occlusion management. We generate a new wall (in blue) which is co-planar with the projecting rays � and X correspondng to the visible corner (dots in 

green). This new wall defines two new corners (dots in red) in a partialy occluded wall. The green wireframe is the ground truth layout. 
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n occlusion in the environment. To avoid this problem, we com- 

ute each corner as the point of the computed 3D line that min- 

mises the Euclidean metric distance in E 

3 [35] between the 3D 

ine and the projecting ray corresponding to the corner provided 

y the network. Each projecting ray crosses with two 3D lines 

orresponding to two consecutive walls where two different cases 

ay appear. When the computed 3D corners coincide in a single 

oint, no occluded wall is detected and this point is a corner of the 

nvironment. By contrast, if the computed corners are different 3D 

oints (i.e. the distance between them is higher than a threshold), 

e have found an occluded wall between the two 3D lines and we 

nsert a wall in the layout model (see Fig. 7 ). Since in an Atlanta

orld assumption there is no restriction about the walls direction, 

e assume that the occluded wall and the projecting ray of the 

orner lie in the same plane. 

Finally, we make a final adjustment where we fine tune the 3D 

ines direction and position. We minimise the least-square repro- 

ecting error of the computed 3D lines with the pixel coordinates 

f the boundaries [35] provided by the network. This final adjust- 

ent refines the position of the 3D corners. The movement of the 

orners out of the plane defined by the projecting rays of the cor- 

ers is penalized. This extra soft-restriction allows managing the 

nfinite posible solutions caused by occlusions during the optimiza- 

ion step. 

. Experiments 

The pipeline of our proposal is divided into two main blocks: a 

eural network that extracts the boundaries of the structural lines 

f an indoor environment from a single panorama and a geomet- 

ical processing that takes as input the output of the network and 

ecovers the 3D scaled layout. In order to evaluate our proposal, 

e have performed a set of experiments. We independently eval- 

ate the performance of both main blocks: the proposed neural 

etwork and geometric pipeline. Additionally, we make a compari- 
7 
on with state of the art methods for line estimation in non-central 

anoramas and for layout recovery from single panoramas. Before 

escribing the experiments, we present the image dataset used to 

rain the neural network and perform the experiments. 

.1. Non-central panorama dataset 

Currently, we can find a great amount of image datasets, from 

erspective images [42] to omnidirectional panoramas [39,43] . 

owever, non-central projection systems have never been used 

ith deep learning before, thus there is not a dataset of this kind 

f images. This is a big problem in our case, since we need a large

mount of images to train a deep learning architecture. So, we 

resent a new dataset obtained with our synthetic generator of re- 

listic non-central panoramas. It includes semantic, depth and 3D 

nformation of the environment. 

We generate random layouts, from 4 to 14 walls, in a Manhat- 

an world assumption. Then, with a probability set by the user, cor- 

ers of these layouts are clipped and substituted by oblique walls 

o generate Atlanta world layouts. Once obtained the structure of 

he room, we compute the free space to place objects in it. We 

ave two kinds of objects: those that are placed next to a wall in a

xed orientation (beds, desks, wardrobes, TVs) and those that are 

laced in the middle of the room at any orientation (chairs, sofas, 

arpets). These objects are taken from different pools where one is 

hosen randomly and placed in the room if has a free space in it. 

dditionally, the ceiling, floor and walls materials and colour are 

aken from different pools and chosen randomly for each new en- 

ironment. After the virtual environment is generated, we set the 

llumination conditions. We have different pre-defined ambient il- 

uminations and we also randomly place spot lights to give the en- 

ironment a more realistic view. 
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Table 1 

Evaluation and comparison of different state-of-the-art methods for layout recovery. 

We compare HorizonNet [9] (HN), Corners for layouts [30] (CFL) and LayoutNet v2 

[1] (LNv2) with the weights provided in their works (Base Line) and after a fine 

tuning with non-central panoramas (Fine Tuning). The metrics in bold represent 

the best result (higher is better). All networks are tested in the test partition of the 

dataset proposed in Section 6.1 . 

Base Line Fine Tuning 

HN [9] CFL [30] LNv2 [1] HN CFL LNv2 

Corners P 0.379 0.298 0.352 0.806 0.644 0.457 

Acc 0.995 0.994 0.985 0.998 0.997 0.984 

R 0.204 0.236 0.160 0.792 0.543 0.817 

IoU 0.154 0.150 0.133 0.643 0.418 0.400 

Edges P 0.068 0.085 0.064 0.476 0.231 0.115 

Acc 0.983 0.983 0.945 0.995 0.991 0.951 

R 0.153 0.202 0.084 0.544 0.373 0.158 

IoU 0.047 0.060 0.036 0.382 0.166 0.068 
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Once defined the virtual enviroment, we use POV-Ray 1 to ren- 

er RGB and semantic images and MegaPOV 

2 for depth maps. 

hese images are generated by a ray tracing method, which can 

ollow ad-hoc programmable camera projection models. In our 

ase, we use the projection model presented in Section 3 for non- 

entral circular panoramas. The center of the acquisition system is 

laced in a random position for each room generated, obtaining 

 greater variability in the walls distortion along the dataset. This 

llows to generate a set of images, from different rooms and in 

ifferent positions, not only in the center of the room as many ex- 

sting datasets. 

For this work, we have generated a dataset of non-central 

anoramas to fine-tune the deep learning architecture presented 

n Section 4.1 . The dataset 3 is formed by more than 2600 im- 

ges, taken from different positions inside the environments, from 

round 650 different rooms, from 4 to 14 walls, combining Man- 

attan and Atlanta environments. We propose a division of the 

ataset in three blocks: training set, formed by 1677 panoramas; 

alidation set, formed by 399 panoramas; and test set, formed by 

99 panoramas. Each set includes Atlanta and Manhattan environ- 

ents of different number of walls, and we make sure that there 

re no equal layouts in different sets. 

.2. Ablation study: non-central horizonnet 

In this work, we have adapted an existing neural network to 

ork with non-central panoramas, fine-tuning it with the dataset 

roposed in the previous section. We take the weights for the net- 

ork that minimise the validation error during the training to per- 

orm the different experiments. 

We evaluate and compare different state-of-the-art networks 

or layout extraction in order to verify our selection. The different 

etworks have been evaluated before and after a fine tuning with 

ur proposed dataset of non-central panoramas. We have consid- 

red HorizonNet [9] , Corners for Layouts [30] and LayoutNetv2 [1] . 

To evaluate the performance of boundary and corner extractors, 

e use similar metrics as in [1,30] . We compare the probability 

aps of the output of the network with their respective labels 

each network provides different output resolutions and different 

robability maps). We try to make the comparison of methods as 

air as posible, evaluating the outputs in a similar way and with 

heir respective parameters for the label generation. In order to in- 

lude HorizonNet in this comparison, we generate the probability 

ap of edges and corners from the output of the network (which 

re 1D arrays with pixel information) in a similar way than [1,30] . 

he metrics defined for the evaluation are: Precision (P), Recall (R), 

ccuracy (Acc) and Intersection over Union (IoU). In Table 1 we 

resent the results of this comparison. 

.3. Ablation study: geometric solvers 

In this section, we evaluate the proposed solvers presented in 

ection 5 . To do so, we use the ground truth information of the 

est partition of the dataset to evaluate the sensitivity to noise of 

he geometric solvers for line extraction. We compare our results 

ith the state of the art method for line extraction in non-central 

anoramas [18] . Since we are focusing on the geometric approach, 

e omite the environments with occlusions. 

As input information, we use the projecting rays of the bound- 

ries of the structural lines of the indoor environment, taken 
1 The Persistence of Vision Raytracer http://www.povray.org/ , website visited in 

020 
2 MegaPOV http://megapov.inetart.net/ , website visited in 2020 
3 The dataset will be available in github.com/jesusbermudezcameo/ 

onCentralIndoorDataset 

t

t

b

t

u

L

8 
ith sub-pixel accuracy from the ground truth information of the 

ataset. To evaluate the sensitivity to noise of the solvers, we add 

ncreasing Gaussian noise to the ground truth projecting rays at 

ub-pixel level. For the evaluation of our Manhattan layout solver, 

e use the walls direction to label the walls in the two main Man- 

attan directions. For the Atlanta layout solver, we need these wall 

irections to compute the projecting rays in the wall reference sys- 

em. The method proposed in [18] compute the lines which are 

arallel to a known plane, which in our case is the horizontal 

lane. 

To make the evaluation and comparison, we use the same met- 

ics defined in [18] . Computed a 3D line L = (l , ̄l ) T , we compute

he direction error as: εdir = arccos (l T · l gt ) , measured in degrees. 

e also compute the depth error of the line as: εdepth = |‖ ̄l ‖ −
 ̄l gt ‖| , measured in meters. Additionally, we use a common met- 

ic in layout recovery works, the corner error (CE). We compute 

he corners of the layout as line intersections and compute the L2 

istance to the ground truth corners to define the metric. 

The evaluation and comparison of our methods with the pro- 

osed in [18] is shown in Fig. 8 . In blue is shown our Manhattan

olver, in green is shown our Atlanta solver while in red is shown 

he method presented in [18] . 

.4. Full pipeline validation 

In this section, we analyse the performance of the geometric 

ipeline proposed in Section 5.4 against the use of only the ge- 

metric solvers from Sections 5.2 and 5.3 . The question is: if we 

ave two geometric solvers that obtains the whole layout, why we 

eed a more complex geometric pipeline? The answer comes in 

wo parts. First, the geometrical solvers are not able to handle pos- 

ible occlusion in the environment. Second, we have observed that 

he input information to the geometric block of our full pipeline 

 Fig. 3 ) can be noisy and with spurious data. As seen in previous

ection 6.3 , the geometrical solvers work well with refined data, 

owever they may lead to impossible layouts if the input is too 

oisy or if the fitting is corrupted by spurious information. 

We test how much the performance of our method improves 

ith and without the proposed geometric pipeline. For that pur- 

ose, we compute the corners of the test-set layouts of our dataset 

n two different cases. In the first case, we use as input of our geo-

etric block the labels of the network (’Network labels’ in Table 2 ), 

hat means, the best information that the network would be able 

o provide. On a second case, we use as input of the geometric 

lock the predictions provided by the network (’Network predic- 

ions’ in Table 2 ), which are noisier than the labels. The metrics 

sed to make the comparison are: Corner Error (CE), defined as the 

2 distance between the computed corners and the ground truth; 

http://www.povray.org/
http://megapov.inetart.net/
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Fig. 8. Experimental results to evaluate and compare our proposed Manhattan and Atlanta layout solvers against a state-of-the-art method for line extraction [18] . In blue 

are the Manhattan solver results. In green are the Atlanta solver results. In red are the state of the art method results. (a) shows the Corner error, in meters, of our proposed 

solvers. (b) shows the Direction error of our solvers compared to [18] , in degrees and logarithmic scale. Notice that the direction error of the Atlanta solver is zero since we 

provide the lines direction as prior. (c) shows the Depth error of our proposed solvers compared to [18] , in meters and logarithmic scale. 

Table 2 

Comparison of layout recovery with only the solvers or the whole proposed geo- 

metric pipeline. 

Network labels Network predictions 

World 

assumption CE (m) IoU (%) CE (m) IoU (%) 

Solvers Manhattan 0.0297 98.0036 0.5569 81.7364 

Atlanta 0.8575 57.3289 1.2860 42.6701 

Pipeline Manhattan 0.0218 98.4753 0.2109 86.8104 

Atlanta 0.1391 92.5012 0.4811 76.0218 
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Table 3 

Comparison of methods: fine tuned HorizonNet [9] (HorizonNet FT) and our 

method. Evaluation made in selected Manhattan environments from the test-set of 

the presented dataset. HorizonNet FT uses the camera height for computing the 

scale while our proposal does not use extra measurements to compute the 3D lay- 

out. 

Scale assumption CE IoU (%) 

HorizonNet 

FT 

No-scale 0.3380 82.6742 

Metric 0.3504 82.6742 

Ours No-scale 0.2024 87.6208 

Metric 0.2271 87.6208 

Table 4 

Comparison of different state-of-the-art methods for 3D layout recovery. 

Manhattan World assumption 

3D IoU (u2s) 3D IoU CEN CE 

CFL [30] 78.87 - 0.75 - 

HorizonNet [9] 82.66 - 0.69 - 

AtlantaNet [31] 83.94 - 0.71 - 

Ours 93.87 86.16 0.78 0.223 

Atlanta World assumption 

HorizonNet [9] 73.53 - - - 

AtlantaNet [31] 80.01 - - - 

Ours 90.46 76.02 1.5 0.481 

higher is better smaller is better 
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nd the Intersection over Union (IoU) of the volumes of the com- 

uted layout and the ground truth. In this experiment, ’Solvers’ re- 

er to the use of only the geometric solvers presented in Section 5 .

e use the wall extractor (see Section 5.1 ) to compute the wall 

abels in the Manhattan case and the walls’ direction in the At- 

anta case, and then the layout solver to obtain the corners of the 

oom. ’Pipeline’ refers to the use of the whole geometric pipeline 

roposed in Section 5.4 . In order to make a more fair comparison, 

nvironments with occlusions have not been taken into account to 

ompute the metrics (if so, the performance difference would be 

uch greater). Table 2 shows the results of this experiment. 

.5. State of the art comparison 

We have performed three different tests to compare our work 

ith the state-of-the-art methods for layout recovery from a sin- 

le panorama. In a first experiment, we have fine-tuned Horizon- 

et [9] with equirectangular panoramas of the same virtual en- 

ironments of our dataset. On a second experiment, we compare 

he results of different state-of-the-art works with ours in Man- 

attan and Atlanta environments. Finally, on the third experiment 

e compare our proposal with state-of-the-art methods on the 

tanford 2D-3DS [39] dataset, labelled as cuboid rooms. In the 

ig. 10 we present qualitative results of our proposal in the two 

atasets evaluated. 

For our first experiment, we have generated a dual test-set, 

ith equirectangular and non-central panoramas taken in the 

ame position in the same Manhattan environments. We use this 

et-up to compare two different methods and two different acqui- 

ition systems in the same test-set. Then, we recover the layout 

ith HorizonNet, from central panoramas, and with our method, 

rom non-central panoramas, for Manhattan environments. Notice 

hat HorizonNet does not obtain the scale of the layout. Instead, it 

ssumes a camera height and computes the 3D corners with this 

xtra measurement. Our method does extract the scale of the envi- 

onment, so this measurement is computed and not given. To take 
9 
his into account, we compare the metrics in two different cases. 

n a first case (No-scale), we normalize the layouts, predicted and 

round truth, with the camera height. In the second case (Metric), 

e use the real camera height to compute the scale in the predic- 

ion from HorizonNet. In the case of our proposal, the scale is com- 

uted directly from the image, without any extra measurement. 

able 3 shows the results of this comparison. The metrics used are 

he Corner Error (CE) and the Intersection over Union (IoU) defined 

efore. 

On a second experiment, we compare our method with other 

tate-of-the-art methods. This second comparison is not as fair as 

he previous one since each method has been trained and tested 

n different datasets, so the results can depend on the dataset used 

nd not only on the method. The metrics used for the comparison 

re: 3D IoU, which refer to the 3D intersection over union of the 

redicted layout and the ground truth; 3D IoU(u2s), which refer to 

he up-to-scale intersection over union of the layout; CEN, which 

efer to the Corner Error Normalized computed as the L2 distance 

f the corners divided by the diagonal of the layout’s bounding 

ox; CE, which refers to the Corner Error computed as the L2 dis- 
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Fig. 9. Qualitative and quantitative demonstration of the proposed scaled layout recovery with real images. As qualitative evaluation, in green is a wire-frame of the room 

layout. 

Table 5 

Comparison of different state-of-the-art methods for 3D layout recovery evaluated 

in the Stanford 2D3DS [39] dataset. 

3D IoU (u2s) 3D IoU CEN CE 

CFL [30] 65.23 - 1.44 - 

HorizonNet [9] 83.51 - 0.62 - 

LayoutNet v2 [1] 82.66 - 0.66 - 

AtlantaNet [31] 83.94 - 0.71 - 

Ours 88.19 58.19 2.02 0.878 

higher is better smaller is better 
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ance of the corners in meters. Table 4 shows the results of this 

xperiment. 

The third proposed experiment aims to compare the perfor- 

ance of different state-of-the-art methods for layout recovery in 

he same dataset. In this case, we choose Stanford 2D3DS [39] , 

here the layouts are labelled as cuboids. For this experiment, we 

ave generated a set of non-central panoramas from the colour and 

epth information of the dataset. With the new dataset we make 

 fine tuning of our network and evaluate our proposal. We have 

bserved that some images present gitches and blank spaces that 

ead our algorithm to failures where no layout can be recovered 

 ∼2.5% of the test-set). We present the results of this experiment 

n Table 5 considering the cases where the layout can be recovered. 

.6. Qualitative experiments 

In this section we present different exam ples of real non-central 

anoramas and the scaled layout recovery with our pipeline. The 
10 
cquisition and anotation of these real examples has been made 

anually by the authors. 

Fig. 9 shows the real non-central panoramas and their corre- 

ponding reconstruction using our pipeline. These panoramas have 

ifferent calibrations and have been taken in different environ- 

ents and also in different illumination conditions. Besides, due to 

he acquisition system, these images are grey-scale, which provide 

ess information to the network. To solve this problem, we have 

rained the network on grey-scale panoramas, creating a second set 

f weights for this gray-scale version of the network. As a qualita- 

ive demonstration, we show a green wireframe that represents the 

eal layout of each environment, measured with a laser meter and 

econstructed and aligned with the results. We have computed the 

ame metrics as in other experiments, obtaining an average corner 

rror of CE = 1 . 01 m and an average 3D intersection over union of

oU = 65 . 57% . We also present the corner error and intersection 

ver union of each image in the Fig. 9 . 

. Discussion 

In this section we analyse and discuss the results obtained in 

he previous experiments. Sections 6.2, 6.3 and 6.4 evaluate dif- 

erent parts of our pipeline. In the first one, we have compared 

hree state of the art networks for layout recovery. This experi- 

ent supports our initial intuition and we can claim that Hori- 

onNet [9] is our best option among the evaluated networks for 

oundary extraction. Even though before the fine tuning it is not 

he best option, the architecture of HorizonNet is really suitable 

or structural line extraction in non-central panoramas and pro- 

ides the best performance after fine tuning. In 6.3 we compare 
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Fig. 10. Qualitative demonstration of the proposed scaled layout recovery with synthetic images (first and second rows) and real images adapted from the Stanford dataset 

(last row). As qualitative evaluation, in green is a wire-frame of the room layout. 
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ur new layout solvers against a state-of-the-art line extractor for 

on-central panoramas. We observe that our approach outperforms 

revious methods for line extraction in both Manhattan and At- 

anta world assumptions by a large margin. Finally, the evaluation 

f our geometric block validates the use of a more complex geo- 

etric pipeline. From the results presented in Table 2 , we observe 

hat the difference in performance between the solvers and the 

ipeline using the network labels in Manhattan environments is 

uite small. However, for Atlanta environments and with the use 

f the network predictions, the performance of the full geometric 

ipeline is significantly better. 

In Section 6.5 we compare our method with different state of 

he art implementations for layout recovery. In a first experiment, 

e make a comparison with HorizonNet. This is the most fair com- 

arison made since we use panoramas from the same virtual envi- 

onments and same locations on both methods in order to recover 

heir layout. The results show that our proposal outperforms Hori- 

onNet in the two cases of study: with extra measurements for 

orizonNet and in up-to-scale reconstructions. On the second ex- 

eriment, we make a comparison with other state of the art meth- 
11 
ds. In this experiment, the datasets used for the experiments are 

ifferent, so the results do not completly show the performance 

f each method. Nevertheless, making the comparison of the re- 

ults of each method, our proposal presents a better performance 

n most of the metrics. Besides, we are able to recover the scale of 

he environment without extra measurements while other meth- 

ds need a metric measure to scale the layout (e.g the camera or 

oom height). Furthermore, we want to highlight the results in At- 

anta environments. State-of-the-art methods do not refer in their 

orks the management of occlusions in Atlanta environments, al- 

hough they do manage occlusion in Manhattan world. Our pro- 

osal does handle occlusions in Atlanta environments, as well as 

n Manhattan environments. On the third experiment, we com- 

are different state-of-the-art methods for cuboid layout extrac- 

ion. Even though our metrics drop significantly against the results 

hown from our dataset, we still outperform state-of-the-art meth- 

ds in the up to scale intersection over union. This drop in perfor- 

ance can be explained by the specialization into cuboid layouts 

f the dataset labelling. Looking for a more general solution may 

educe the performance on more specific tasks. Our proposal aims 
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Fig. 11. We present cases where our method fails in the scale recovery. 
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[

o obtain the layout from a greater variability of rooms (our syn- 

hetic dataset has rooms from 4 to 14 walls) which means that our 

lgorithm is not as particularized to cuboids as other state of the 

rt methods. 

As a qualitative demonstration, in Section 6.6 we present some 

xamples of layout recovery from real images, taken by the au- 

hors. We observe that the performance varies from environment 

o environment. We are able to recover the layout of most of the 

nvironments and, in several cases, we achieve a good 3D scaled 

econstruction of the environment. The performance in the 3D re- 

onstruction is limited due to the noisy output of the network 

hen dealing with these real images. This is the effect of the lack 

f real images for training the network and the artifacts that these 

eal images present in the acquisition process. 

In the Fig. 11 we show cases where the scale recovery of the en-

ironment fails. Analysing those cases, we found different possible 

ources of error. One of these sources is the information provided 

y the network. When the images present environments which are 

oo cluttered, occluding practically any boundary of the floor-wall 

ntersection, the output of the network is not very accurate esti- 

ating the floor boundary. This lead to a worse 3D reconstruction. 

esides, the artifacts in real images fool the network making it be- 

ive that there are more wall-wall boundaries than there really are. 

ther source of error is the occlusion management in Atlanta en- 

ironments. We found out that an incorrect definition of the 3D 

orners of the room when dealing with an occlusion lead the final 

djustment to under-estimate the scale of the room. This seem log- 

cal since the closer the 3D points are to the acquisition reference 

ystem, the lower the reprojection error will be. A final source of 

rror is the effective baseline of the non-central acquisition sys- 

em. This problem is also more evident in the real images. With 

 smaller effective baseline, related with the radius of the non- 

entral panorama, the accuracy to compute the scale of the room 

s reduced. 

. Conclusions 

In this paper we have proposed a new pipeline that completely 

olves the layout recovery problem from a single image (i.e. re- 

onstructing Manhattan and Atlanta environments with scale). We 

ave presented the first application of non-central panoramas that 

s comparable with state of the art methods for layout recovery, 

ven improving in some of the metrics. We introduce the first 

ndoor dataset of non-central panoramas automatically generated. 

his dataset provides a good resource for many researchers to fur- 

her investigate the geometrical properties of the non-central pro- 

ection system. 

The experiments presented in this paper show that our pro- 

osal can achieve great results. However, there is still room to 
12 
row when real images enter into action. Since real images are 

ard to obtain, the current approach cannot handle these non- 

entral panoramas as well as with the synthetically generated. 

evertheless, the results are promising and may encourage the 

evelopment of commertial devices able to obtain non-central 

anoramas. 
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