38 research outputs found

    Étude du transport d'énergie thermique dans les plasmas du tokamak à configuration variable au moyen de chauffage électronique cyclotronique

    Get PDF
    The development of controlled thermonuclear fusion, a quasi-unlimited energy source suitable for large scale electricity production, is one of the main goals of plasma physics research. Among the directions explored to date, the use of toroidal devices called tokamaks to create and confine hot plasmas using strong magnetic fields is particularly promising. The energy used to heat the plasma must remain well confined in order to achieve plasma temperatures higher than one hundred millon degrees for a sufficiently long period to obtain numerous fusion reactions. In the frame of efficient electricity production, maximising the energy confinement is also essential to achieve the required temperature with the lowest heating power. In tokamak plasmas, energy losses are mainly due to radiation and radial energy transport from the plasma core to the edge. A significant fraction of plasma physics research is therefore dedicated to the study of radial transport in tokamaks and the exploration of new operation regimes characterised by a low transport level. The development and optimisation of diagnostics used to observe plasmas is also part of this work. This thesis work, performed on the Tokamak à Configuration Variable (TCV) in Lausanne, covers the implementation and exploitation of a multi-channel soft X-ray detector with high spatial and temporal resolution, together with the development of the tomographic inversion routines used for data analysis. The detector, comprised of two superposed wire chambers, has been tested and calibrated using an X-ray source and then installed onto the tokamak. The position of the detector was chosen such as to observe the whole plasma cross-section with maximum spatial resolution leading to high quality tomographic inversions. A mobile absorber holder was installed between the plasma and the wire chambers. The energy range of the soft X-ray emission observed by the detector was thus chosen by selecting the appropriate absorber. These various features have made possible the use of the detector for numerous studies and in particular for the spatial and temporal characterisation of the plasma internal transport barrier formation. Plasma shaping abilities covering a wide range of plasma elongations and triangularities, including negative values, are one of the strengths of the TCV tokamak. For instance, plasmas with elongated cross-sections offer higher energy confinement as well as higher plasma current and pressure limits. However, the increase of the plasma vertical instability growth rate with elongation makes the vertical control of elongated plasmas difficult, in particular if the plasma current profile is too peaked. As the current profile is usually peaked for low plasma currents, current profile broadening is required there to achieve high elongation. During this thesis, a current profile broadening method based on temperature profile modification by localised EC heating has been studied in detail. The mechanism of this method has been documented and the optimal conditions for the EC power deposition determined. Using these conditions, the TCV operational space has been extended towards higher elongation at low current. The highest elongation obtained at low current has been increased by over 25% permitting the exploration of the plasma transport properties in this regime. The flexibility of the TCV EC heating system has also been used to investigate radial electron heat transport in L-mode plasmas. For the first time, the normalised temperature gradient has been varied by a factor of four and its influence on electron heat transport has been separated from that of the electron temperature. Electron heat transport increases strongly with the normalised temperature gradient, for values between 6 and 10, and then becomes independent of this parameter. In addition, electron heat transport increases with increasing electron temperature, decreasing density and increasing effective charge. The electron heat transport dependence on these three parameters can be cast as a single dependence on the plasma collisionality. TCV shaping abilities have then been used to test the influence of plasma triangularity. The main variations of the level of electron heat transport are described by a decrease of the electron heat diffusivity towards negative triangularity and high collisionality. At constant collisionality, electron heat transport is two times lower at a negative triangularity of –0.4 than at a positive triangularity of +0.4. Concerning micro-instabilities, gyro-fluid and gyro-kinetic simulations indicate that TEM and ITG instabilities are at play in these plasmas. The good qualitative agreement between the observed experimental dependencies and the predictions of simulations suggests strongly that the TEM instabilities are involved in the transport of electron heat. The experimental study provides dependable scaling of the electron heat transport on plasma parameters that can now be used to test the prediction of transport simulations. New elements such as the saturation of electron heat transport at high values of the normalised temperature gradient and the decrease of electron heat transport towards negative triangularities have been demonstrated

    Ion temperature gradient instability at sub-Larmor radius scales with non-zero ballooning angle

    Full text link
    Linear gyro-kinetic stability calculations predict unstable toroidal Ion Temperature Gradient modes with normalised poloidal wave vectors well above one (kθρi>1k_\theta \rho_i > 1) for standard parameters and with adiabatic electrons. These modes have a maximum amplitude at a poloidal angle θ\theta that is shifted away from the low field side (θ0\theta \ne 0). The physical mechanism is clarified through the use of a fluid model. It is shown that the shift of the mode away from the low field side (θ0\theta \ne 0) reduces the effective drift frequency, and allows for the instability to develop. Numerical tests using the gyro-kinetic model confirm this physical mechanism. It is furthermore shown that modes with θ0\theta \ne 0 can be important also for kθρi<1k_\theta \rho_i < 1 close to the threshold of the ITG. In fact, modes with θ0\theta \ne 0 can exist for normalised temperature gradient lengths below the threshold of the ITG obtained for θ=0\theta = 0

    Interplay between toroidal rotation and flow shear in turbulence stabilisation

    No full text
    International audienceThe interplay between toroidal rotation u, parallel flow shear u ′ and perpendicular flow shear γE in the stabilisation of tokamak turbulence is investigated in non-linear flux-tube gyrokinetic simulations. The simulations are performed for a reference L-mode DIII-D plasma (the so-called shortfall case) at r/a = 0.8, varying the flow parameters around their nominal values. Depending on the respective signs of u, u ′ and γE, turbulence is found to be enhanced, reduced or unchanged. When the coupling is favorable, the overall effect on the non-linear heat fluxes can be very large, even at moderate flow values. The ion heat flux is for instance decreased by a factor of three when the direction of the parallel flow shear is reversed with respect to its nominal value. Even more surprising, keeping u ′ and γE at their nominal values, the ion heat flux decreases by more than 50% when the toroidal flow is reversed. The relevance of this mechanism in the experiments which depends on the ability to decouple u, u ′ and γE is discussed. The interplay between u and u ′ observed in the non-linear simulations qualitatively follows the linear stability results and is interpreted in the frame of a simple fluid model

    Transport barrier onset and edge turbulence shortfall in fusion plasmas

    Full text link
    Turbulent plasmas notably self-organize to higher energy states upon application of additional free energy sources or modification of edge operating conditions. Mechanisms whereby such bifurcations occur have been actively debated for decades. Enhanced confinement occurs at the plasma edge, where a shortfall of predicted turbulence intensity has been puzzling scientists for decades. We show, from the primitive kinetic equations that both problems are connected and that interplay of confined plasma turbulence with its material boundaries is essential to curing the shortfall of predicted turbulence and to triggering spontaneous transport barrier onset at the plasma edge. Both problems determine access to improved confinement and are central to fusion research. A comprehensive discussion of the underlying mechanisms is proposed. These results, highly relevant to the quest for magnetic fusion may also be generic to many problems in fluids and plasmas where turbulence self-advection is active

    Demonstration of Electron-Bernstein-Wave Heating in a Tokamak via O-X-B Double-Mode Conversion

    Get PDF
    The first demonstration of electron-Bernstein-wave heating by double-mode conversion from the O to the X mode in an overdense H-mode tokamak plasma has been achieved in the Tokamak a` Configuration Variable device. This technique overcomes the upper density limit experienced by conventional microwave heating. The sensitive dependence of the O-X mode conversion on the microwave launching direction has been verified experimentally, and localized power deposition consistent with theoretical predictions has been observed at densities well above the conventional cutoff

    Fast modeling of turbulent transport in fusion plasmas using neural networks

    Get PDF
    We present an ultrafast neural network (NN) model, QLKNN, which predicts core tokamak transport heat and particle fluxes. QLKNN is a surrogate model based on a database of 300 million flux calculations of the quasilinear gyrokinetic transport model QuaLiKiz. The database covers a wide range of realistic tokamak core parameters. Physical features such as the existence of a critical gradient for the onset of turbulent transport were integrated into the neural network training methodology. We have coupled QLKNN to the tokamak modelling framework JINTRAC and rapid control-oriented tokamak transport solver RAPTOR. The coupled frameworks are demonstrated and validated through application to three JET shots covering a representative spread of H-mode operating space, predicting turbulent transport of energy and particles in the plasma core. JINTRAC-QLKNN and RAPTOR-QLKNN are able to accurately reproduce JINTRAC-QuaLiKiz T i,e and n e profiles, but 3 to 5 orders of magnitude faster. Simulations which take hours are reduced down to only a few tens of seconds. The discrepancy in the final source-driven predicted profiles between QLKNN and QuaLiKiz is on the order 1%-15%. Also the dynamic behaviour was well captured by QLKNN, with differences of only 4%-10% compared to JINTRAC-QuaLiKiz observed at mid-radius, for a study of density buildup following the L-H transition. Deployment of neural network surrogate models in multi-physics integrated tokamak modelling is a promising route towards enabling accurate and fast tokamak scenario optimization, Uncertainty Quantification, and control applications.Comment: 18 pages, 11 figures, Physics of Plasmas, ICDDPS 2019 conference pape

    Electron Bernstein wave heating of over-dense H-mode plasmas in the TCV tokamak via O-X-B double mode conversion

    Get PDF
    This paper reports on the first demonstration of electron Bernsteinwave heating (EBWH) by double mode conversion from ordinary (O-) to Bernstein (B-) via the extraordinary (X-) mode in an over-dense tokamak plasma, using low field side launch, achieved in the TCV tokamak H-mode, making use of its naturally generated steep density gradient. This technique offers the possibility of overcoming the upper density limit of conventional EC microwave heating. The sensitive dependence of the O-X mode conversion on the microwave launching direction has been verified experimentally. Localized power deposition, consistent with theoretical predictions, has been observed at densities well above the conventional cut-off. Central heating has been achieved, at powers up to two megawatts. This demonstrates the potential of EBW in tokamak H-modes, the intended mode of operation for a reactor such as ITER

    Plasma Turbulence studied by means of Correlation-ECE in the TEM domain in TCV

    Get PDF
    Plasma Turbulence studied by means of Correlation-ECE in the TEM domain in TCV Electron temperature fluctuations in the TEM domain have been measured in TCV using the correlation-ECE diagnostics [1]. Significant broadband electron temperature fluctuations are found radially extending between 0.3<ρ<0.7 on the equatorial LFS. Their amplitude decreases with collisionality (with increasing density in OH discharges), in qualitative agreement with predictions from local, linear gyrokinetic GS2 calculations. Thus the mixing length heat diffusivity calculated from GS2 decreases with collisionality, as does the measured heat diffusivity from power balance [2]. This diagnostics allows now the study at the microscopic, turbulence level, of the previously found heat transport triangularity scaling [3], linked to changes of the resonance of TE with the TEM [4]. The decrease of transport when going from positive to negative triangularity found in TCV L-mode can now be investigated and compared to gyrokinetic predictions of instabilities or turbulence (linear/non-linear, local/global). TEM features, like the orientation of the potential cells, predicted to change with plasma shape, up/down-asymmetries, can now be measured through the correlation lengths along a horizontal line of sight, or obliquely, using a mobile mirror arrangement (ECRH launcher in reception mode). [1] V.S. Udintsev et al., Fusion Science and Technology 52 (2007) 161. [2] V.S. Udintsev, E. Fable et al., in preparation. [3] Y. Camenen et al. Nucl., Fusion 47 (2007) 510. [4] A. Marinoni et al., Plasma Phys. Control. Fusion 51 (2009) 055016. 1 present address ITER-IO, Cadarache, St Paul-lez-Durance, F 2 present address CFSA, Dept of Physics, University of Warwick, UK This work was supported in part by the Swiss National Science Foundation

    Transport and turbulence reduction with negative triangularity : Correlation ECE measurements in TCV

    Get PDF
    Turbulence and Transport Reduction with Negative Triangularity : Correlation ECE Measurements in TCV Due to turbulence, core energy transport in fusion devices such as tokamaks generally exceeds collisional transport by at least an order of magnitude. It is therefore crucial to understand the instabilities driving the turbulent state and to find ways to control them. Plasma shape is one of these fundamental tools. In low collisionality plasmas, such as in a reactor, changing the plasma shape from Dee-shape to inverse Dee-shape (from positive to negative triangularity δ) reduces the energy transport by a factor two: the heat flux necessary to sustain the same profiles and stored energy in a discharge with δ=-0.4 is only half of that at δ=+0.4. This is significant, since it opens the possibility of having Hmode-like confinement time within an L-mode edge; or at least with smaller ELMs. Recent correlation ECE measurements show that this reduction of transport at negative δ is reflected in a reduction by a factor of two of both 1) the amplitude of temperature fluctuations in the broadband frequency range 30-150 kHz, and 2) the fluctuation correlation length, measured at mid-radius (ρv~0.6). In addition, the fluctuations amplitude is reduced with increasing collisionality, consistent with theoretical estimates of the collisionality effect on Trapped Electron Modes (TEM). The correlation ECE results are compared to gyrokinetic code results: 1) global linear gyrokinetic simulations (LORB) have predicted shorter radial TEM wavelength λ⊥ for negative triangularity plasmas, consistent with the shorter radial turbulence correlation length λc observed. 2) At least close to the strongly shaped plasma boundary, local nonlinear gyrokinetic simulations with the GS2 code predict that the TEM induced transport decreases with decreasing triangularity and increasing collisionality, in fair agreement with the experimental observations. 3) Calculations are now extended to global nonlinear simulations (ORB5). This work was supported in part by the Swiss National Science Foundatio
    corecore