1,815 research outputs found

    Differentiable Simulation of a Liquid Argon Time Projection Chamber

    Full text link
    Liquid argon time projection chambers (LArTPCs) are widely used in particle detection for their tracking and calorimetric capabilities. The particle physics community actively builds and improves high-quality simulators for such detectors in order to develop physics analyses in a realistic setting. The fidelity of these simulators relative to real, measured data is limited by the modeling of the physical detectors used for data collection. This modeling can be improved by performing dedicated calibration measurements. Conventional approaches calibrate individual detector parameters or processes one at a time. However, the impact of detector processes is entangled, making this a poor description of the underlying physics. We introduce a differentiable simulator that enables a gradient-based optimization, allowing for the first time a simultaneous calibration of all detector parameters. We describe the procedure of making a differentiable simulator, highlighting the challenges of retaining the physics quality of the standard, non-differentiable version while providing meaningful gradient information. We further discuss the advantages and drawbacks of using our differentiable simulator for calibration. Finally, we provide a starting point for extensions to our approach, including applications of the differentiable simulator to physics analysis pipelines

    Quantum-corrected black hole thermodynamics to all orders in the Planck length

    Full text link
    We investigate the effects to all orders in the Planck length from a generalized un- certainty principle (GUP) on black holes thermodynamics. We calculate the corrected Hawking temperature, entropy, and examine in details the Hawking evaporation process. As a result, the evaporation process is accelerated and the evaporation end-point is a zero entropy, zero heat capacity and finite non zero temperature black hole remnant (BHR). In particular we obtain a drastic reduction of the decay time, in comparison with the results obtained in the Hawking semi classical picture and with the GUP to leading order in the Planck length.Comment: 20 pages, 4 figures, 2 tables, Late

    Search for Pair-Produced Resonances Decaying to Quark Pairs in Proton-Proton Collisions at √s = 13  TeV

    Get PDF
    A general search for the pair production of resonances, each decaying to two quarks, is reported. The search is conducted separately for heavier resonances (masses above 400 GeV), where each of the four final-state quarks generates a hadronic jet resulting in a four-jet signature, and for lighter resonances (masses between 80 and 400 GeV), where the pair of quarks from each resonance is collimated and reconstructed as a single jet resulting in a two-jet signature. In addition, a b-tagged selection is applied to target resonances with a bottom quark in the final state. The analysis uses data collected with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 35.9  fb⁻Âč, from proton-proton collisions at a center-of-mass energy of 13 TeV. The mass spectra are analyzed for the presence of new resonances, and are found to be consistent with standard model expectations. The results are interpreted in the framework of R-parity-violating supersymmetry assuming the pair production of scalar top quarks decaying via the hadronic coupling λâ€Čâ€Č312 or λâ€Čâ€Č323 and upper limits on the cross section as a function of the top squark mass are set. These results probe a wider range of masses than previously explored at the LHC, and extend the top squark mass limits in the ˜t→qqâ€Č scenario

    Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at √s = 13 TeV

    Get PDF
    Results are presented from a search for the direct electroweak production of charginos and neutralinos in signatures with either two or more leptons (electrons or muons) of the same electric charge, or with three or more leptons, which can include up to two hadronically decaying tau leptons. The results are based on a sample of proton-proton collision data collected at s√=13 TeV, recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb⁻Âč. The observed event yields are consistent with the expectations based on the standard model. The results are interpreted in simplified models of supersymmetry describing various scenarios for the production and decay of charginos and neutralinos. Depending on the model parameters chosen, mass values between 180 GeV and 1150 GeV are excluded at 95% CL. These results significantly extend the parameter space probed for these particles in searches at the LHC. In addition, results are presented in a form suitable for alternative theoretical interpretations

    Search for Standard Model Production of Four Top Quarks with Same-Sign and Multilepton Final States in Proton–proton Collisions at √s = 13 TeV

    Get PDF
    A search for standard model production of four top quarks (ttÂŻttÂŻ) is reported using events containing at least three leptons (e,ÎŒ) or a same-sign lepton pair. The events are produced in proton–proton collisions at a center-of-mass energy of 13TeV at the LHC, and the data sample, recorded in 2016, corresponds to an integrated luminosity of 35.9fb[superscript −1]. Jet multiplicity and flavor are used to enhance signal sensitivity, and dedicated control regions are used to constrain the dominant backgrounds. The observed and expected signal significances are, respectively, 1.6 and 1.0 standard deviations, and the ttÂŻttÂŻ cross section is measured to be 16.9[superscript +13.8][subscript −11.4] fb, in agreement with next-to-leading-order standard model predictions. These results are also used to constrain the Yukawa coupling between the top quark and the Higgs boson to be less than 2.1 times its expected standard model value at 95% confidence level

    Measurement of the transverse momentum spectrum of the Higgs boson produced in pp collisions at √s=8 TeV using H → WW decays

    Get PDF
    The cross section for Higgs boson production in pp collisions is studied using the H → W[superscript +]W[superscript −] decay mode, followed by leptonic decays of the W bosons to an oppositely charged electron-muon pair in the final state. The measurements are performed using data collected by the CMS experiment at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.4 fb[superscript −1]. The Higgs boson transverse momentum (p[subscript T]) is reconstructed using the lepton pair p[subscript T] and missing p[subscript T]. The differential cross section times branching fraction is measured as a function of the Higgs boson pTin a fiducial phase space defined to match the experimental acceptance in terms of the lepton kinematics and event topology. The production cross section times branching fraction in the fiducial phase space is measured to be 39 ± 8 (stat) ± 9 (syst) fb. The measurements are found to agree, within experimental uncertainties, with theoretical calculations based on the standard model. Keywords: Hadron-Hadron scattering (experiments), Higgs physicsNational Science Foundation (U.S.)United States. Department of Energ

    Search for Low Mass Vector Resonances Decaying to Quark-Antiquark Pairs in Proton-Proton Collisions at √s = 13 TeV

    Get PDF
    A search is reported for a narrow vector resonance decaying to quark-antiquark pairs in proton-proton collisions at √s = 13 TeV, collected with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 2.7 fb⁻Âč. The vector resonance is produced at large transverse momenta, with its decay products merged into a single jet. The resulting signature is a peak over background in the distribution of the invariant mass of the jet. The results are interpreted in the framework of a leptophobic vector resonance and no evidence is found for such particles in the mass range of 100-300 GeV. Upper limits at 95% confidence level on the production cross section are presented in a region of mass-coupling phase space previously unexplored at the LHC. The region below 140 GeV has not been explored by any previous experiments

    Search for supersymmetry in events with at least one photon, missing transverse momentum, and large transverse event activity in proton-proton collisions at √s = 13 TeV

    Get PDF
    A search for physics beyond the standard model in final states with at least one photon, large transverse momentum imbalance, and large total transverse event activity is presented. Such topologies can be produced in gauge-mediated supersymmetry models in which pair-produced gluinos or squarks decay to photons and gravitinos via short-lived neutralinos. The data sample corresponds to an integrated luminosity of 35.9 fb[superscript −1] of proton-proton collisions at s√=13 TeV recorded by the CMS experiment at the LHC in 2016. No significant excess of events above the expected standard model background is observed. The data are interpreted in simplified models of gluino and squark pair production, in which gluinos or squarks decay via neutralinos to photons. Gluino masses of up to 1.50-2.00 TeV and squark masses up to 1.30-1.65 TeV are excluded at 95% confidence level, depending on the neutralino mass and branching fraction. Keywords: Hadron-Hadron scattering (experiments); Supersymmetry; Photon productio
    • 

    corecore