252 research outputs found

    Following damage, the majority of bone marrow-derived airway cells express an epithelial marker

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells.</p> <p>Methods</p> <p>Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations.</p> <p>Results</p> <p>The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0 – 1.6% with whole marrow and 0.6 – 1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any cytokeratin mRNA in SP or bone marrow samples by RT-PCR.</p> <p>Conclusion</p> <p>The appearance of bone marrow derived cells in the tracheal epithelium is enriched by detergent-induced tissue damage and the majority of these cells express an epithelial marker. The cytokeratin positive donor derived cells in the tracheal epithelium are not present in the injected donor cells and must have acquired this novel phenotype <it>in vivo</it>.</p

    RASSF1A–LATS1 signalling stabilizes replication forks by restricting CDK2-mediated phosphorylation of BRCA2

    Get PDF
    Genomic instability is a key hallmark of cancer leading to tumour heterogeneity and therapeutic resistance. ​BRCA2 has a fundamental role in error-free DNA repair but also sustains genome integrity by promoting ​RAD51 nucleofilament formation at stalled replication forks. ​CDK2 phosphorylates ​BRCA2 (pS3291-​BRCA2) to limit stabilizing contacts with polymerized ​RAD51; however, how replication stress modulates ​CDK2 activity and whether loss of pS3291-​BRCA2 regulation results in genomic instability of tumours are not known. Here we demonstrate that the Hippo pathway kinase ​LATS1 interacts with ​CDK2 in response to genotoxic stress to constrain pS3291-​BRCA2 and support ​RAD51 nucleofilaments, thereby maintaining genomic fidelity during replication stalling. We also show that ​LATS1 forms part of an ​ATR-mediated response to replication stress that requires the tumour suppressor ​RASSF1A. Importantly, perturbation of the ​ATR–​RASSF1A–​LATS1 signalling axis leads to genomic defects associated with loss of ​BRCA2 function and contributes to genomic instability and ‘BRCA-ness’ in lung cancers

    Normal Hematopoietic Stem Cell Function in Mice with Enforced Expression of the Hippo Signaling Effector YAP1

    Get PDF
    The Hippo pathway has recently been implicated in the regulation of organ size and stem cells in multiple tissues. The transcriptional cofactor yes-associated protein 1 (Yap1) is the most downstream effector of Hippo signaling and is functionally repressed by the upstream components of the pathway. Overexpression of YAP1 stimulates proliferation of stem and progenitor cells in many tissues, consistent with inhibition of Hippo signaling. To study the role of Hippo signaling in hematopoietic stem cells (HSCs), we created a transgenic model with inducible YAP1 expression exclusively within the hematopoietic system. Following 3 months induction, examination of blood and bone marrow in the induced mice revealed no changes in the distribution of the hematopoietic lineages compared to control mice. Moreover, the progenitor cell compartment was unaltered as determined by colony forming assays and immunophenotyping. To address whether YAP1 affects the quantity and function of HSCs we performed competitive transplantation experiments. We show that ectopic YAP1 expression does not influence HSC function neither during steady state nor in situations of hematopoietic stress. This is in sharp contrast to effects seen on stem- and progenitor cells in other organs and suggests highly tissue specific functions of the Hippo pathway in regulation of stem cells

    Immunological imbalance between IFN-³ and IL-10 levels in the sera of patients with the cardiac form of Chagas disease

    Get PDF
    The immune response is crucial for protection against disease; however, immunological imbalances can lead to heart and digestive tract lesions in chagasic patients. Several studies have evaluated the cellular and humoral immune responses in chagasic patients in an attempt to correlate immunological findings with clinical forms of Chagas disease. Moreover, immunoglobulins and cytokines are important for parasitic control and are involved in lesion genesis. Here, cytokine and IgG isotype production were studied, using total epimastigote antigen on sera of chagasic patients with indeterminate (IND, n = 27) and cardiac (CARD, n = 16) forms of the disease. Samples from normal, uninfected individuals (NI, n = 30) were use as controls. The results showed that sera from both IND and CARD patients contained higher levels of Trypanosoma cruzi-specific IgG1 (IgG1) antibodies than sera from NI. No difference in IgG2 production levels was observed between NI, IND and CARD patients, nor was a difference in IL-10 and IFN-³ production detected in the sera of IND, CARD and NI patients. However, IND patients displayed a positive correlation between IL-10 and IFN-³ levels in serum, while CARD patients showed no such correlation, indicating an uncontrolled inflammatory response in CARD patients. These findings support the hypothesis that a lack of efficient regulation between IFN-³ and IL-10 productions in CARD patients may lead to cardiac immunopathology.CNP

    Stem cells and repair of lung injuries

    Get PDF
    Fueled by the promise of regenerative medicine, currently there is unprecedented interest in stem cells. Furthermore, there have been revolutionary, but somewhat controversial, advances in our understanding of stem cell biology. Stem cells likely play key roles in the repair of diverse lung injuries. However, due to very low rates of cellular proliferation in vivo in the normal steady state, cellular and architectural complexity of the respiratory tract, and the lack of an intensive research effort, lung stem cells remain poorly understood compared to those in other major organ systems. In the present review, we concisely explore the conceptual framework of stem cell biology and recent advances pertinent to the lungs. We illustrate lung diseases in which manipulation of stem cells may be physiologically significant and highlight the challenges facing stem cell-related therapy in the lung

    Treatment-Induced Tumor Dormancy through YAP-Mediated Transcriptional Reprogramming of the Apoptotic Pathway

    Get PDF
    Eradicating tumor dormancy that develops following epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment of EGFR-mutant non-small cell lung cancer, is an attractive therapeutic strategy but the mechanisms governing this process are poorly understood. Blockade of ERK1/2 reactivation following EGFR TKI treatment by combined EGFR/MEK inhibition uncovers cells that survive by entering a senescence-like dormant state characterized by high YAP/TEAD activity. YAP/TEAD engage the epithelial-to-mesenchymal transition transcription factor SLUG to directly repress pro-apoptotic BMF, limiting drug-induced apoptosis. Pharmacological co-inhibition of YAP and TEAD, or genetic deletion of YAP1, all deplete dormant cells by enhancing EGFR/MEK inhibition-induced apoptosis. Enhancing the initial efficacy of targeted therapies could ultimately lead to prolonged treatment responses in cancer patients

    Control of Tissue Growth and Cell Transformation by the Salvador/Warts/Hippo Pathway

    Get PDF
    The Salvador-Warts-Hippo (SWH) pathway is an important regulator of tissue growth that is frequently subverted in human cancer. The key oncoprotein of the SWH pathway is the transcriptional co-activator, Yes-associated protein (YAP). YAP promotes tissue growth and transformation of cultured cells by interacting with transcriptional regulatory proteins via its WW domains, or, in the case of the TEAD1-4 transcription factors, an N-terminal binding domain. YAP possesses a putative transactivation domain in its C-terminus that is necessary to stimulate transcription factors in vitro, but its requirement for YAP function has not been investigated in detail. Interestingly, whilst the WW domains and TEAD-binding domain are highly conserved in the Drosophila melanogaster YAP orthologue, Yorkie, the majority of the C-terminal region of YAP is not present in Yorkie. To investigate this apparent conundrum, we assessed the functional roles of the YAP and Yorkie C-termini. We found that these regions were not required for Yorkie's ability to drive tissue growth in vivo, or YAP's ability to promote anchorage-independent growth or resistance to contact inhibition. However, the YAP transactivation domain was required for YAP's ability to induce cell migration and invasion. Moreover, a role for the YAP transactivation domain in cell transformation was uncovered when the YAP WW domains were mutated together with the transactivation domain. This shows that YAP can promote cell transformation in a flexible manner, presumably by contacting transcriptional regulatory proteins either via its WW domains or its transactivation domain
    corecore