2,342 research outputs found

    Drought influence over radial growth of Mexican conifers inhabiting mesic and xeric sites

    Get PDF
    Drought is a major constraint of forest productivity and tree growth across diverse habitat types. In this study, we investigated the drought responses of four conifer species growing within two locations of differing elevation and climatic conditions in northern Mexico. Two species were selected at a mesic site (Cupressus lusitanica Mill., Abies durangensis Martínez) and the other two species were sampled at a xeric site (Pinus engelmannii Carr., Pinus cembroides Zucc.). Using a dendrochronological approach, we correlated the radial-growth series of each species and the climatic variables. All study species positively responded to wet-cool conditions during winter and spring. Despite the close proximity of species at a mesic site, A. durangensis had high responsiveness to hydroclimatic variability, but C. lusitanica was not responsive. At the xeric site, P. engelmannii and P. cembroides were very responsive to drought severity, differentiated only by the longer time scale of the response to accumulated drought of P. engelmannii. The responsiveness to hydroclimate and drought of these tree species seems to be modulated by site conditions, or by the functional features of each species that are still little explored. These findings indicate that differentiating between mesic and xeric habitats is a too coarse approach in diverse forests with a high topographic heterogeneity.Fil: Pompa García, Marín. Universidad Juárez; MéxicoFil: González Cásares, Marcos. Universidad Juárez; MéxicoFil: Acosta Hernández, Andrea C.. Universidad Juárez; MéxicoFil: Camarero, Jesús Julio. Instituto Pirenaico de Ecología; EspañaFil: Rodriguez Catón, Milagros Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentin

    Tailoring magnetic anisotropy in epitaxial half metallic La0.7Sr0.3MnO3 thin films

    Full text link
    We present a detailed study on the magnetic properties, including anisotropy, reversal fields, and magnetization reversal processes, of well characterized half-metallic epitaxial La0.7Sr0.3MnO3 (LSMO) thin films grown onto SrTiO3 (STO) substrates with three different surface orientations, i.e. (001), (110) and (1-18). The latter shows step edges oriented parallel to the [110] (in-plane) crystallographic direction. Room temperature high resolution vectorial Kerr magnetometry measurements have been performed at different applied magnetic field directions in the whole angular range. In general, the magnetic properties of the LSMO films can be interpreted with just the uniaxial term with the anisotropy axis given by the film morphology, whereas the strength of this anisotropy depends on both structure and film thickness. In particular, LSMO films grown on nominally flat (110)-oriented STO substrates presents a well defined uniaxial anisotropy originated from the existence of elongated in-plane [001]-oriented structures, whereas LSMO films grown on nominally flat (001)-oriented STO substrates show a weak uniaxial magnetic anisotropy with the easy axis direction aligned parallel to residual substrate step edges. Elongated structures are also found for LSMO films grown on vicinal STO(001) substrates. These films present a well-defined uniaxial magnetic anisotropy with the easy axis lying along the step edges and its strength increases with the LSMO thickness. It is remarkable that this step-induced uniaxial anisotropy has been found for LSMO films up to 120 nm thickness. Our results are promising for engineering novel half-metallic magnetic devices that exploit tailored magnetic anisotropy.Comment: 10 pages, 10 figures, 1 tabl

    Surfactant effect in heteroepitaxial growth. The Pb - Co/Cu(111) case

    Full text link
    A MonteCarlo simulations study has been performed in order to study the effect of Pb as surfactant on the initial growth stage of Co/Cu(111). The main characteristics of Co growing over Cu(111) face, i.e. the decorated double layer steps, the multiple layer islands and the pools of vacancies, disappear with the pre-evaporation of a Pb monolayer. Through MC simulations, a full picture of these complex processes is obtained. Co quickly diffuses through the Pb monolayer exchanging place with Cu atoms at the substrate. The exchange process diffusion inhibits the formation of pure Co islands, reducing the surface stress and then the formation of multilayer islands and the pools of vacancies. On the other hand, the random exchange also suppress the nucleation preferential sites generated by Co atoms at Cu steps, responsible of the step decoration.Comment: 4 pages, latex, 2 figures embedded in the tex

    Additive manufactured, highly resilient, elastic, and biodegradable poly(ester)urethane scaffolds with chondroinductive properties for cartilage tissue engineering

    Get PDF
    Articular cartilage was thought to be one of the first tissues to be successfully engineered. Despite the avascular and non-innervated nature of the tissue, the cells within articular cartilage - chondrocytes - account for a complex phenotype that is difficult to be maintained in vitro. The use of bone marrow-derived stromal cells (BMSCs) has emerged as a potential solution to this issue. Differentiation of BMSCs toward stable and non-hypertrophic chondrogenic phenotypes has also proved to be challenging. Moreover, hyaline cartilage presents a set of mechanical properties - relatively high Young's modulus, elasticity, and resilience - that are difficult to reproduce. Here, we report on the use of additive manufactured biodegradable poly(ester)urethane (PEU) scaffolds of two different structures (500 mu m pore size and 90 degrees or 60 degrees deposition angle) that can support the loads applied onto the knee while being highly resilient, with a permanent deformation lower than 1% after 10 compression-relaxation cycles. Moreover, these scaffolds appear to promote BMSC differentiation, as shown by the deposition of glycosaminoglycans and collagens (in particular collagen II). At gene level, BMSCs showed an upregulation of chondrogenic markers, such as collagen II and the Sox trio, to higher or similar levels than that of traditional pellet cultures, with a collagen II/collagen I relative expression of 2-3, depending on the structure of the scaffold. Moreover, scaffolds with different pore architectures influenced the differentiation process and the final BMSC phenotype. These data suggest that additive manufactured PEU scaffolds could be good candidates for cartilage tissue regeneration in combination with microfracture interventions.</p

    Interplay between magnetic anisotropy and interlayer coupling in nanosecond magnetization reversal of spin-valve trilayers

    Full text link
    The influence of magnetic anisotropy on nanosecond magnetization reversal in coupled FeNi/Cu/Co trilayers was studied using a photoelectron emission microscope combined with x-ray magnetic circular dicroism. In quasi-isotropic samples the reversal of the soft FeNi layer is determined by domain wall pinning that leads to the formation of small and irregular domains. In samples with uniaxial magnetic anisotropy, the domains are larger and the influence of local interlayer coupling dominates the domain structure and the reversal of the FeNi layer

    Surfactant induced smooth and symmetric interfaces in Cu/Co multilayers

    Full text link
    In this work we studied Ag surfactant induced growth of Cu/Co multilayers. The Cu/Co multilayers were deposited using Ag surfactant by ion beam sputtering technique. It was found that Ag surfactant balances the asymmetry between the surface free energy of Cu and Co. As a result, the Co-on-Cu and Cu-on-Co interfaces become sharp and symmetric and thereby improve the thermal stability of the multilayer. On the basis of obtained results, a mechanism leading to symmetric and stable interfaces in Cu/Co multilayers is discussed.Comment: 7 Pages, 7 Figure

    The internationalisation of the Spanish SME sector

    Get PDF
    As part of a wider research program, we analysed the theoretical framework and the recent developments of the process of internationalisation (transnationalisation) of the small- and medium-sized enterprises in Spain. The paper highlights the main trends and barriers of this internationalisation process. Methodology included document analyses, interviews, and the analyses of statistical databases

    Plant height and hydraulic vulnerability to drought and cold

    Get PDF
    Understanding how plants survive drought and cold is increasingly important as plants worldwide experience dieback with drought in moist places and grow taller with warming in cold ones. Crucial in plant climate adaptation are the diameters of water-transporting conduits. Sampling 537 species across climate zones dominated by angiosperms, we find that plant size is unambiguously the main driver of conduit diameter variation. And because taller plants have wider conduits, and wider conduits within species are more vulnerable to conduction-blocking embolisms, taller conspecifics should be more vulnerable than shorter ones, a prediction we confirm with a plantation experiment. As a result, maximum plant size should be short under drought and cold, which cause embolism, or increase if these pressures relax. That conduit diameter and embolism vulnerability are inseparably related to plant size helps explain why factors that interact with conduit diameter, such as drought or warming, are altering plant heights worldwide

    Earlywood and Latewood Widths of Picea chihuahuana Show Contrasting Sensitivity to Seasonal Climate

    Get PDF
    The existence of endangered tree species in Mexico necessitates an understanding of their vulnerability to the predicted climate changes (warming and drying trends). In this study, the sensitivity to climate of earlywood (EW) and latewood (LW) widths of the threatened Picea chihuahuana was determined. The response of EW and LW to climate variables (maximum temperature, minimum temperature, precipitation, evaporation, and a drought index) was analyzed by means of correlation analysis using dendrochronology over the period of 1950–2015. EW and LW production were enhanced by cool and wet conditions during winter prior to the start of growing season. During the growing season, EW and LW production increased in response to cool spring and summer conditions, respectively; temperatures and year-round evaporation, excluding summer and the previous drought in the period prior to the growing season. EW was sensitive to seasonal drought, which is a concern considering the predicted aridification trends for the study area. These results provide further knowledge on the dendroecological potential of Picea chihuahuana.Funding was provided by CONACYT (Consejo Nacional de Ciencia y Tecnología) through the CB-2013/222522 project. Many thanks to the community-based site known as “Ejido el Brillante”, and we also thank the forester responsible for the area (Javier Bretado) for supporting the data gathering. We thank the Dirección General de Vida Silvestre, SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales), Mexico, for providing technical facilities. Gabriel Sagüesa contributed with sample processing. The authors are grateful to the editors and anonymous reviewers for their useful comments and suggestions.We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI)

    Substrate-induced magnetic anisotropy in La0.7Sr 0.3MnO3 epitaxial thin films grown onto (110) and (118) SrTiO3 substrates

    Full text link
    We show a detailed magneto-optical Kerr study at room temperature of well characterized epitaxial La0.7Sr0.3MnO3 (LSMO) thin films grown onto (110) and (118) SrTiO3 substrates. The films present a well-defined uniaxial (two-fold) magnetic anisotropy ascribed to substrate-induced anisotropy. In particular, the in-plane uniaxial anisotropy in the(110)-oriented LSMO films originates from the existence of elongated in-plane [001]-oriented structures. Similar elongated structures, parallel to the [110] crystallographic direction, are found for LSMO films grown on (118) STO surfaces. In all films, such a uniaxial magnetic anisotropy is characterized by an easy axis lying along the elongated structures. Furthermore, the vectorial-resolved hysteresis loops as a function of the in-plane applied field direction are interpreted in terms of rotation and propagation and nucleation of magnetic domains processes. Our results demonstrate the tailoring of magnetic anisotropy by exploiting the substrate-induced anisotropy in epitaxial thin filmsThis work was supported in part by the Spanish MICINN through Project No. CSD2007-00010 and by the Comunidad de Madrid through Project No. S2009/MAT-1726. P.P. thanks the European Science Foundation (ESF) through the activity entitled ’Thin Films for Novel Oxide Devices’ (http://www.ims.tnw.utwente.nl/thiox/) for partial financial support through exchange grant
    corecore